以雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中心O(坐標(biāo)原點(diǎn))為圓心,焦矩為直徑的圓與雙曲線交于M點(diǎn)(第一象限),F(xiàn)1、F2分別為雙曲線的左、右焦點(diǎn),過點(diǎn)M作x軸垂線,垂足恰為OF2的中點(diǎn),則雙曲線的離心率為( 。
A、
3
-1
B、
3
C、
3
+1
D、2
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意M的坐標(biāo)為M(
c
2
,
3
c
2
),代入橢圓方程可得e的方程,即可求出雙曲線的離心率.
解答: 解:由題意M的坐標(biāo)為M(
c
2
3
c
2
),代入橢圓方程可得
c2
4a2
-
3c2
4b2
=1

∴e4-8e2+4=0,
∴e2=4+2
3

∴e=
3
+1.
故選:C.
點(diǎn)評:本題考查雙曲線與圓的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩圓C1:x2+y2-10x-10y=0與C2:x2+y2+6x+2y-40=0的公共弦所在直線方程是
 
,公共弦的長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(|x|+4),且f(a2)+f(a)<0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(4,3),向量
a
在向量
b
上的投影為
5
2
2
,
b
在x抽正方向上的投影為2,且|
b
|≤14,則
b
為( 。
A、(2,14)
B、(2,-
2
7
C、(-2,
2
7
D、(2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A、y=-2x+5
B、y=
2
x
C、y=-x2+2
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)對任意兩個(gè)不等實(shí)數(shù)x1,x2,且x1,x2∈(a,b)都有x1f(x1)+x2f(x2)>x1f(x2+x2f(x)1),則稱函數(shù)f(x)為區(qū)間(a,b)上的“G”函數(shù).給出下列命題:①f(x)=2x-sinx是R上的“G”函數(shù);②f(x)=
x2+4x(x≥0)
x-1,x<0
是R上的“G”函數(shù);③f(x)=
2x(x≥1)
2x+1,x<1
是R上的“G”函數(shù);④若函數(shù)f(x)=ex-ax-2是R上的“G”函數(shù),則a≤0.其中正確的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
OA
,
OB
OC
,
OD
滿足:
OA
OB
OC
OD
(α,β,γ∈R),B、C、D為不共線三點(diǎn),給出下列命題:
①若α=
3
2
,β=
1
2
,γ=-1,則A、B、C、D四點(diǎn)在同一平面上;
②當(dāng)α>0,β>0,γ=
2
時(shí),若|
OA
|=
3
,|
OB
|=|
OC
|=|
OD
|=1,(
OB
,
OC
)=
6
,(
OD
OB
)=(
OD
,
OC
)=
π
2
,則α+β的最大值為
6
-
2
;
③已知正項(xiàng)等差數(shù)列{an}(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三點(diǎn)共線,但O點(diǎn)不在直線BC上,則
1
a3
+
4
a2008
的最小值為9;
④若α+β=1(α•β≠0),γ=0,則A、B、C三點(diǎn)共線且A分
BC
所成的比λ一定為
α
β

其中正確的命題個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,若點(diǎn)B(0,2b)在以F1、F2為直徑的圓的外部,則該雙曲線的離心率的取值范圍為( 。
A、(
2
5
3
,+∞)
B、(1,
2
5
3
C、(
2
3
3
,+∞)
D、(1,
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足條件
x≥0
y≥x
3x+4y≤12
,則
x+2y+3
x+1
的最大值是(  )
A、9
B、
12
7
C、3
D、-
3
4

查看答案和解析>>

同步練習(xí)冊答案