18.在三棱錐S-ABC中,∠ABC=90°,AC中點(diǎn)為點(diǎn)O,AC=2,SO⊥平面ABC,SO=$\sqrt{3}$,則三棱錐外接球的表面積為$\frac{16π}{3}$.

分析 利用勾股定理列方程得出外接球半徑,從而可得外接球的面積.

解答 解:∵∠ABC=90°,SO⊥平面ABC,
∴外接球的球心M在直線SO上,
且BO=$\frac{1}{2}$AC=1,
設(shè)OM=h,則外接球的半徑R=MS=$\sqrt{3}$-h,
又R=MB=$\sqrt{O{M}^{2}+O{B}^{2}}$=$\sqrt{{h}^{2}+1}$,
∴$\sqrt{{h}^{2}+1}$=$\sqrt{3}$-h,
解得h=$\frac{\sqrt{3}}{3}$,∴R=$\frac{2\sqrt{3}}{3}$,
∴外接球的表面積S=4πR2=$\frac{16π}{3}$.
故答案為:$\frac{16π}{3}$.

點(diǎn)評 本題考查了棱錐與球的位置關(guān)系,球的面積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax-lnx-$\frac{a}{x}$,a∈R
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào),求a的取值范圍;
(2)討論函數(shù)f(x)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=sinx+1,g(x)=mex,若?x∈[0,π],都有f(x)≤g(x)成立,則m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=5$\sqrt{2x-1}$+$\sqrt{10-2x}$的最大值為3$\sqrt{26}$,此時x=$\frac{251}{52}$(利用柯西不等式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3-3ax2+2bx在點(diǎn)x=1處有極小值-1.
(1)確定a,b的值,
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
由表中數(shù)據(jù)得到的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中$\stackrel{∧}$=1.1,預(yù)測當(dāng)產(chǎn)量為9千件時,成本約為( 。┤f元.
A.14.5B.13.5C.12.5D.11.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計資料:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
若由資料知,y與x呈線性相關(guān)關(guān)系,
(1)試求線性回歸方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估計使用年限為10年時,維修費(fèi)用是多少?
注:$\left.\begin{array}{l}{∧}\\\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\\end{array}\right.$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角A、B、C的對邊為a、b、c.且$\frac{cosA}{cosC}=\frac{a}{2b-c}$
(1)求角A的值;
(2)設(shè)a=2,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}中,${a_n}=\frac{1}{{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1}}}$,則S4=$\frac{3-\sqrt{5}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案