已知
(1)化簡;
(2)若是第三象限角,且 ,求的值.

(1);(2).

解析試題分析:(1)利用三角函數(shù)誘導(dǎo)公式化簡可得;(2)利用誘導(dǎo)公式求出,利用已知條件知,利用平方關(guān)系求出,進(jìn)而求出.
試題解析:(1)原式;
(2)由得,,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e5/1/cpn2z1.png" style="vertical-align:middle;" />是第三象限角,所以,所以
考點(diǎn):三角函數(shù)誘導(dǎo)公式、三角化簡.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),且的圖象的一個對稱中心到最近的對稱軸的距離為,
(Ⅰ)求的值
(Ⅱ)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1) 求的最小正周期及其圖像的對稱軸方程;
(2) 將函數(shù)的圖像向右平移個單位長度,得到函數(shù)的圖像,求在區(qū)間的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,游客在景點(diǎn)處下山至處有兩條路徑.一條是從沿直道步行到,另一條是先從沿索道乘纜車到,然后從沿直道步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到.假設(shè)纜車勻速直線運(yùn)動的速度為,索道長為,經(jīng)測量,.

(1)求山路的長;
(2)假設(shè)乙先到,為使乙在處等待甲的時間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,分別為角所對的邊,向量,且垂直.
(Ⅰ)確定角的大小;
(Ⅱ)若的平分線于點(diǎn),且,設(shè),試確定關(guān)于的函數(shù)式,并求邊長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,扇形AOB,圓心角AOB的大小等于,半徑為2,在半徑OA上有一動點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.

(1)若C是半徑OA的中點(diǎn),求線段PC的長;
(2)設(shè),求面積的最大值及此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)確定函數(shù)上的單調(diào)性并求在此區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當(dāng)時函數(shù)圖象如圖所示

(Ⅰ)求函數(shù)的表達(dá)式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常數(shù)的值,使得上恒成立;若存在,求出 的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)d的最大值為2,是集合中的任意兩個元素,且的最小值為.
(1)求函數(shù)的解析式及其對稱軸;
(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案