如圖所示,扇形AOB,圓心角AOB的大小等于,半徑為2,在半徑OA上有一動點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.
(1)若C是半徑OA的中點(diǎn),求線段PC的長;
(2)設(shè),求面積的最大值及此時的值.
(1);(2)時,取得最大值為.
解析試題分析:本題考查解三角形中正弦定理、余弦定理的應(yīng)用,三角形面積公式以及運(yùn)用三角公式進(jìn)行恒等變形,考查學(xué)生的分析能力和計算能力.第一問,在中,,,由余弦定理求邊長;第二問,在中,利用正弦定理,得到,,三角形面積公式,將上面2個邊長代入,利用二倍角公式、降冪公式、兩角和與差的正弦公式化簡表達(dá)式,再求三角函數(shù)的最值.
試題解析:(1)在中,,,由,
得,解得.
(2)∵,∴,
在中,由正弦定理得,即,
∴,又,.
記的面積為,則
∴時,取得最大值為.
考點(diǎn):1.余弦定理;2.正弦定理;3.二倍角公式;4.降冪公式;5.兩角和與差的正弦公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=x2+ax().
(1)若函數(shù)y=f(sinx+cosx)()的最大值為,求f(x)的最小值;
(2)當(dāng)a>2時,求證:f(sin2xlog2sin2x+cos2xlog2cos2x)1–a.其中x∈R,x¹kp且x¹kp(k∈Z).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中角的終邊經(jīng)過點(diǎn),且.
(1)求的值;
(2)求在上的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,求的最大值及相應(yīng)的x值;
(2)利用函數(shù)y=sin的圖象經(jīng)過怎樣的變換得到f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的最大值為,且,是相鄰的兩對稱軸方程.
(1)求函數(shù)在上的值域;
(2)中,,角所對的邊分別是,且 ,,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com