【題目】已知曲線(xiàn).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求過(guò)點(diǎn)的曲線(xiàn)的切線(xiàn)方程.
【答案】(1);(2)
或
.
【解析】試題分析:(1)根據(jù)曲線(xiàn)的解析式求出導(dǎo)函數(shù),把P的橫坐標(biāo)代入導(dǎo)函數(shù)中即可求出切線(xiàn)的斜率,根據(jù)P的坐標(biāo)和求出的斜率寫(xiě)出切線(xiàn)的方程即可;
(2)設(shè)出曲線(xiàn)過(guò)點(diǎn)P切線(xiàn)方程的切點(diǎn)坐標(biāo),把切點(diǎn)的橫坐標(biāo)代入到(1)求出的導(dǎo)函數(shù)中即可表示出切線(xiàn)的斜率,根據(jù)切點(diǎn)坐標(biāo)和表示出的斜率,寫(xiě)出切線(xiàn)的方程,把P的坐標(biāo)代入切線(xiàn)方程即可得到關(guān)于切點(diǎn)橫坐標(biāo)的方程,求出方程的解即可得到切點(diǎn)橫坐標(biāo)的值,分別代入所設(shè)的切線(xiàn)方程即可.
試題解析:
(1)
在點(diǎn)
處的切線(xiàn)的斜率
曲線(xiàn)在點(diǎn)
處的切線(xiàn)方程為
即
(2)設(shè)曲線(xiàn)與過(guò)點(diǎn)
的切線(xiàn)相切于點(diǎn)
,則切線(xiàn)的斜率
,
切線(xiàn)方程為
,即
.
點(diǎn)
在切線(xiàn)上,
,即
,
,即
,解得
或
,
故所求的切線(xiàn)方程為或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一個(gè)居民月用電量標(biāo)準(zhǔn),用電量不超過(guò)
的部分按平價(jià)收費(fèi),超出
的部分按議價(jià)收費(fèi).為此,政府調(diào)查了100戶(hù)居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計(jì)總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)
應(yīng)該定為多少合理?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,
底面
,
,
,
,
是棱
上一點(diǎn).
(I)求證: .
(II)若,
分別是
,
的中點(diǎn),求證:
平面
.
(III)若二面角的大小為
,求線(xiàn)段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線(xiàn)l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn),斜率為
的直線(xiàn)交拋物線(xiàn)于
兩點(diǎn),且
.
(1)求該拋物線(xiàn)的方程;
(2) 為坐標(biāo)原點(diǎn),
為拋物線(xiàn)上一點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙H被直線(xiàn)x-y-1=0,x+y-3=0分成面積相等的四個(gè)部分,且截x軸所得線(xiàn)段的長(zhǎng)為2。
(I)求⊙H的方程;
(Ⅱ)若存在過(guò)點(diǎn)P(0,b)的直線(xiàn)與⊙H相交于M,N兩點(diǎn),且點(diǎn)M恰好是線(xiàn)段PN的中點(diǎn),求實(shí)數(shù)b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形與梯形
全等,
,
,
,
,
,
為
中點(diǎn).
(Ⅰ)證明: 平面
(Ⅱ)點(diǎn)在線(xiàn)段
上(端點(diǎn)除外),且
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,橢圓
的上焦點(diǎn)為
,橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程.
(2)設(shè)過(guò)橢圓的上頂點(diǎn)
的直線(xiàn)
與橢圓
交于點(diǎn)
(
不在
軸上),垂直于
的直線(xiàn)與
交于點(diǎn)
,與
軸交于點(diǎn)
,若
,且
,求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某P2P平臺(tái)需要了解該平臺(tái)投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對(duì)區(qū)間[20,50]歲的人群隨機(jī)抽取20人進(jìn)行了一次理財(cái)習(xí)慣調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
(Ⅰ)求a的值并畫(huà)出頻率分布直方圖;
(Ⅱ)在統(tǒng)計(jì)表的第五與第六組的5人中,隨機(jī)選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com