若實(shí)數(shù)x、y滿足(x+2)2+y2=3,則
y
x
的最大值為( 。
A、
3
B、-
3
C、
3
3
D、-
3
3
分析:先判斷出方程表示的圖形,再給
y
x
賦與幾何意義,作出圖象,結(jié)合圖判斷出當(dāng)直線與圓相切時(shí)斜率最大求出最大值.
解答:精英家教網(wǎng)解:(x+2)2+y2=3,表示以(-2,0)為圓心,以
3
為半徑的圓
y
x
表示圓上的點(diǎn)與(0,0)連線的斜率,設(shè)為k則y=kx
由圖知,當(dāng)過原點(diǎn)的直線與圓相切時(shí)斜率最大
故有
3
=
|-2k-0|
1+k2
解得k=
3
k=-
3

由圖知,k=
3

故選A
點(diǎn)評:本題考查圓的標(biāo)準(zhǔn)方程、兩點(diǎn)連線斜率公式的形式、數(shù)形結(jié)合求最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足條件
(x-3)2+y2≤29
1≤x≤5
,則
y
x
的最大值為( 。
A、9-4
5
B、5
C、3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足條件
x-y≤0
x+y≥0
y≤1
,則2x•4y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足條件x+3y-2=0,則z=1+3x+27y的最小值為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)若實(shí)數(shù)x,y滿足
1
2
≤x≤1
y≥-x+1
y≤x+1
,則
y+1
x
的取值范圍是
[1,5]
[1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)若實(shí)數(shù)x,y滿足
1
2
≤x≤1
y≥-x+1
y≤x+1
,則z=x+2y的最大值是
5
5

查看答案和解析>>

同步練習(xí)冊答案