17.已知函數(shù)y=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+2cosx+a的最小值是1,則a的值為$1+\sqrt{7}$.

分析 利用兩角和與差的正弦展開,再結(jié)合輔助角公式化積,由最小值為1列式求得a值.

解答 解:y=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+2cosx+a=2sinxcosx$\frac{π}{6}$+2cosx+a
=$\sqrt{3}sinx+2cosx+a=\sqrt{{{(\sqrt{3})}^2}+{2^2}}sin(x+φ)+a=\sqrt{7}$sin(x+φ)+a,
根據(jù)題意得-$\sqrt{7}$+a=1,解得a=1+$\sqrt{7}$.
故答案為:$1+\sqrt{7}$.

點評 本題考查兩角和與差的三角函數(shù),考查了利用輔助角公式求三角函數(shù)的最值,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.2015年“雙十一”當天,甲、乙兩大電商進行了打折促銷活動,某公司分別調(diào)查了當天在甲、乙電商購物的1000名消費者的消費金額,得到了消費金額的頻數(shù)分布表如下:
甲電商:
消費金額(單位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
頻數(shù)50200350300100
乙電商:
消費金額(單位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
頻數(shù)250300150100200
(Ⅰ)根據(jù)頻數(shù)分布表,完成下列頻率分布直方圖,并根據(jù)頻率分布直方圖比較消費者在甲、乙電商消費金額的中位數(shù)的大小以及方差的大小(其中方差大小給出判斷即可,不必說明理由);

(Ⅱ)
(。└鶕(jù)上述數(shù)據(jù),估計“雙十一”當天在甲電商購物的大量的消費者中,消費金額小于3千元的概率;
(ⅱ)現(xiàn)從“雙十一”當天在甲電商購物的大量的消費者中任意調(diào)查5位,記消費金額小于3千元的人數(shù)為X,試求出X的期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若復數(shù)z=$\frac{{{{(1-i)}^2}}}{1+i}$,則|z|=( 。
A.8B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)x、y、z是兩兩不等的實數(shù),且滿足下列等式:$\root{6}{{x^3{(y-x)}^3}}+\root{6}{{x^3{(z-x)}^3}}=\root{6}{y-x}-\root{6}{x-z}$,則代數(shù)式x3+y3+z3-3xyz的值是( 。
A.0B.1
C.3D.條件不足,無法計算

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)$f(x)=sin(ωx+φ)(ω>0,0<φ<\frac{π}{2})$的圖象經(jīng)過點$B(-\frac{π}{6},0)$,且f(x)的相鄰兩個零點的距離為$\frac{π}{2}$,為得到y(tǒng)=f(x)的圖象,可將y=sinx圖象上所有點( 。
A.先向右平移$\frac{π}{3}$個單位長度,再將所得點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍,縱坐標不變
B.先向左平移$\frac{π}{3}$個單位長度,再將所得點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍,縱坐標不變
C.先向左平移$\frac{π}{3}$個單位長度,再將所得點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變
D.先向右平移$\frac{π}{3}$個單位長度,再將所得點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.對于任意的整數(shù)n(n≥2),滿足an=a+1,b2n=b+3a的正數(shù)a和b的大小關(guān)系是( 。
A.a>b>1B.b>a>1C.a>1,0<b<1D.0<a<1,b>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知命題P:“若x2+y2>2,則|x|>1或|y|>1”;命題P的否定:¬p:若x2+y2>2,則|x|≤1且|y|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=$\sqrt{{x}^{2}+{y}^{2}}$的最大值是( 。
A.$\sqrt{43}$B.$\frac{5\sqrt{2}}{2}$C.$\sqrt{73}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)數(shù)列{an}滿足:a1=1,a2=3,且2nan=(n-1)an-1+(n+1)an+1,則a20的值是(  )
A.4$\frac{1}{5}$B.4$\frac{2}{5}$C.4$\frac{3}{5}$D.4$\frac{4}{5}$

查看答案和解析>>

同步練習冊答案