11.已知遞增的等差數(shù)列{an},首項a1=2,Sn為其前n項和,且2S1,2S2,3S3成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{4}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

分析 (Ⅰ)設(shè)遞增的等差數(shù)列{an}的公差為d(d>0),運(yùn)用等比數(shù)列的中項的性質(zhì)和等差數(shù)列的求和公式及通項公式,即可得到所求;
(Ⅱ)求得bn=$\frac{4}{2n•2(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,運(yùn)用數(shù)列的求和方法:裂項相消求和,化簡整理即可得到所求和.

解答 解:(Ⅰ)設(shè)遞增的等差數(shù)列{an}的公差為d(d>0),
2S1,2S2,3S3成等比數(shù)列,可得(2S22=2S1•3S3,
即有(4a1+2d)2=2a1•3(3a1+3d),
由a1=2,可得d2-d-2=0,
解得d=2(-1舍去),
則an=a1+(n-1)d=2+2(n-1)=2n;
(Ⅱ)bn=$\frac{4}{{{a_n}{a_{n+1}}}}$=$\frac{4}{2n•2(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則前n項和Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點(diǎn)評 本題考查等差數(shù)列的通項公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:裂項相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在用反證法證明命題“已知:x∈R,a=x2+$\frac{1}{2}$,b=2-x,c=x2-x+1,求證:a,b,c至少有一個不小于1”時,假設(shè)正確的是( 。
A.假設(shè)a,b,c都不小于1B.假設(shè)a,b,c都小于1
C.假設(shè)a,b,c不都大于等于1D.假設(shè)a,b,c不都小于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,2c成等比數(shù)列,則角B的取值范圍是(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.[$\frac{π}{6}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.學(xué)校游園活動有這樣一個游戲:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除了顏色外完全相同,每次游戲從這兩個箱子里各隨機(jī)摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率.
②獲獎的概率.
(2)求在3次游戲中獲獎次數(shù)X的分布列.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC中,AB=3,AC=2,點(diǎn)D在邊BC上,滿足$\frac{{\overrightarrow{AD}•\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$=$\frac{{\overrightarrow{AD}•\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$B.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$C.$\frac{3}{5}$$\overrightarrow a$+$\frac{2}{5}$$\overrightarrow b$D.$\frac{2}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,7),若P(ξ>a+2)=P(ξ<a-2),則a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項和為Sn,滿足a1=1,an+1=2Sn+n+1(n∈N*),數(shù)列{bn}滿足b1=1,bn=an($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$)(n≥2,且n∈N*).
(1)求證數(shù)列{an+$\frac{1}{2}$}為等比數(shù)列,并求出an;
(2)(1)證明:$\frac{1+_{n}}{_{n+1}}$=$\frac{{a}_{n}}{{a}_{n+1}}$(n≥2,且n∈N*).
(2)證明:(1+$\frac{1}{_{1}}$)(1+$\frac{1}{_{2}}$)…(1+$\frac{1}{_{n}}$)<3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.一扇形的周長為20cm,當(dāng)扇形的圓心角α等于多少時,這個扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-{a^2}x+\frac{1}{2}a$(a∈R).
(Ⅰ)當(dāng)a=1時,x∈[-1,2],求f(x)的最值.
(Ⅱ)若對任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案