分析 (Ⅰ)設(shè)遞增的等差數(shù)列{an}的公差為d(d>0),運(yùn)用等比數(shù)列的中項的性質(zhì)和等差數(shù)列的求和公式及通項公式,即可得到所求;
(Ⅱ)求得bn=$\frac{4}{2n•2(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,運(yùn)用數(shù)列的求和方法:裂項相消求和,化簡整理即可得到所求和.
解答 解:(Ⅰ)設(shè)遞增的等差數(shù)列{an}的公差為d(d>0),
2S1,2S2,3S3成等比數(shù)列,可得(2S2)2=2S1•3S3,
即有(4a1+2d)2=2a1•3(3a1+3d),
由a1=2,可得d2-d-2=0,
解得d=2(-1舍去),
則an=a1+(n-1)d=2+2(n-1)=2n;
(Ⅱ)bn=$\frac{4}{{{a_n}{a_{n+1}}}}$=$\frac{4}{2n•2(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則前n項和Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點(diǎn)評 本題考查等差數(shù)列的通項公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:裂項相消求和,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 假設(shè)a,b,c都不小于1 | B. | 假設(shè)a,b,c都小于1 | ||
C. | 假設(shè)a,b,c不都大于等于1 | D. | 假設(shè)a,b,c不都小于1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{π}{6}$] | B. | (0,$\frac{π}{3}$] | C. | (0,$\frac{π}{2}$] | D. | [$\frac{π}{6}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$ | B. | $\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$ | C. | $\frac{3}{5}$$\overrightarrow a$+$\frac{2}{5}$$\overrightarrow b$ | D. | $\frac{2}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com