1.在用反證法證明命題“已知:x∈R,a=x2+$\frac{1}{2}$,b=2-x,c=x2-x+1,求證:a,b,c至少有一個(gè)不小于1”時(shí),假設(shè)正確的是(  )
A.假設(shè)a,b,c都不小于1B.假設(shè)a,b,c都小于1
C.假設(shè)a,b,c不都大于等于1D.假設(shè)a,b,c不都小于1

分析 根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而要證明題的否定為:“假設(shè)a,b,c都小于1”,從而得出結(jié)論.

解答 解:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,
而命題:“a,b,c至少有一個(gè)不小于1”的否定為“假設(shè)a,b,c都小于1”,
故選:B.

點(diǎn)評(píng) 本題主要考查用命題的否定,反證法證明數(shù)學(xué)命題的方法和步驟,把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,是解題的突破口,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=-2cosx-x,g(x)=-lnx-$\frac{k}{x}$(k>0).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若對(duì)任意x1∈[0,$\frac{1}{2}$],總存在x2∈[$\frac{1}{2}$,1],使得f(x1)<g(x2),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.平面直角坐標(biāo)系中有A(0,1),B(2,1),C(3,4),D(-1,2)四點(diǎn),求過(guò)A,B,C三點(diǎn)的圓的方程,并判斷點(diǎn)D與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知曲線y1=2-$\frac{1}{x}$與y2=x3-x2+x在x=x0處的切線的斜率的乘積為3,則x0=(  )
A.-2B.2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸的交點(diǎn)為M,與C的交點(diǎn)為N,且|NF|=$\frac{5}{4}$|MN|.
(1)求C的方程;
(2)設(shè)A(-2,1),B(2,1),動(dòng)點(diǎn)Q(m,n)(-2<m<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l.問(wèn):是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知($\sqrt{x}$+$\frac{2}{x^2}$)n的展開(kāi)式中,第5項(xiàng)的系數(shù)與第3項(xiàng)的系數(shù)之比是56:3.
(1)求n的值;
(2)求展開(kāi)式中二項(xiàng)式系數(shù)之和;
(3)求展開(kāi)式中第3項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某班有男同學(xué)200人,女同學(xué)300人,用分層抽樣的方法抽取一個(gè)容量為50的樣本,則應(yīng)分別抽。ā 。
A.男同學(xué)20人,女同學(xué)30人B.男同學(xué)10人,女同學(xué)40人
C.男同學(xué)30人,女同學(xué)20人D.男同學(xué)25人,女同學(xué)25人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)斜率為4的直線l過(guò)拋物線y2=ax(a≠0)的焦點(diǎn)F,且和y軸交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為( 。
A.y2=±4xB.y2=4xC.y2=±4$\sqrt{2}$xD.y2=4$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知遞增的等差數(shù)列{an},首項(xiàng)a1=2,Sn為其前n項(xiàng)和,且2S1,2S2,3S3成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{4}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案