17.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求異面直線AC1與BB1所成的角;
(2)求四面體B1C1CD的體積.

分析 (1)由BB1∥CC1可知∠AC1C為所求角,由CC1⊥底面ABC,AC=CC1可知△ACC1為等腰直角三角形;
(2)取BC中點(diǎn)F,則DF為棱錐D-BCC1的高,底面為直角三角形BCC1,代入體積公式計(jì)算即可.

解答 解:(1)∵BB1∥CC1,
∴∠AC1C為異面直線AC1與BB1所成的角,
∵CC1⊥底面ABC,AC?平面ABC,
∴CC1⊥AC,又AC=CC1,
∴△ACC1是等腰直角三角形,
∴$∠AC{C}_{1}=\frac{π}{4}$,即異面直線AC1與BB1所成的角為$\frac{π}{4}$.
(2)取BC中點(diǎn)F,連結(jié)DF,則DF∥AC,DF=$\frac{1}{2}AC$=1.
∵AC⊥CC1,AC⊥BC,CC1∩BC=C,CC1?平面BCC1B1,BC?平面BCC1B1,
∴AC⊥平面BCC1B1,
∴DF⊥平面BCC1B1,
∵AC=BC=B1C1=CC1=2,
∴S${\;}_{{B}_{1}{C}_{1}C}$=$\frac{1}{2}×2×2=2$,
∴四面體B1C1CD的體積V=$\frac{1}{3}{S}_{△{B}_{1}{C}_{1}C}•DF$=$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了異面直線所成角的計(jì)算,線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列各函數(shù)的定義域:
(1)y=2tan$\frac{x}{2}$  
(2)y=tan(x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.命題$p:?x∈(0,\frac{π}{2}),f(x)<0$,則?p:$?x∈(0,\frac{π}{2}),f(x)≥0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-3),若向量$\overrightarrow{c}$滿足$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow$∥($\overrightarrow{a}$-$\overrightarrow{c}$),則$\overrightarrow{c}$=( 。
A.(-$\frac{7}{4}$,$\frac{7}{8}$)B.($\frac{7}{2}$,-$\frac{7}{4}$)C.(-$\frac{7}{2}$,-$\frac{7}{4}$)D.(-$\frac{7}{2}$,$\frac{7}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={-1,0,1},B={y|y=x2-x,x∈A},則A∩B=( 。
A.?{0}?B.{2}C.?{0,1}?D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在空間,下列說法正確的是( 。
A.兩組對(duì)邊相等的四邊形是平行四邊形
B.四邊相等的四邊形是菱形
C.平行于同一直線的兩條直線平行
D.三點(diǎn)確定一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l:y=kx與橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于A、B兩點(diǎn),其中右焦點(diǎn)F的坐標(biāo)為(c,0),且AF與BF垂直,則橢圓C的離心率的取值范圍為( 。
A.$[{\frac{{\sqrt{2}}}{2},1})$B.$({0,\frac{{\sqrt{2}}}{2}}]$C.$({\frac{{\sqrt{2}}}{2},1})$D.$({0,\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=kx,g(x)=$\frac{lnx}{x}$,若?xi∈[$\frac{1}{e}$,e],(i=1,2)使得f(xi)=g(xi),(i=1,2),則實(shí)數(shù)k的取值范圍是( 。
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$)B.[$\frac{1}{2e}$,$\frac{1}{e}$]C.(0,$\frac{1}{{e}^{2}}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知對(duì)數(shù)函數(shù)f(x)=logax,若f-1(2)=$\frac{1}{4}$,則a=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案