【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD為等邊三角形,PA=BD= ,AB=AD,E為PC的中點(diǎn).
(1)求證:BC⊥AB;
(2)求AB的長;
(3)求平面BDE與平面ABP所成二面角的正弦值.
【答案】
(1)證明:連結(jié)AC,
∵PA⊥底面ABCD,BC平面ABCD,∴PA⊥BC,
又∵BC⊥PB,PA∩PB=P,∴BC⊥平面PAB,
∵AB平面PAB,
∴AB⊥BC
(2)解:由(1)知AB⊥BC,
∵△BCD為等邊三角形,∴∠ABD=30°,
又AB=AD, ,
解得AB=1
(3)解:分別以BC,BA所在直線為x,y軸,過B且平行PA的直線為z軸,建立空間直角坐標(biāo)系,
, , , .
由題意可知平面PAB的法向量 ,
設(shè)平面BDE的法向量為 ,
則 即 ,
取x=3,得 ,
,
∴平面BDE與平面ABP所成二面角的正弦值為 .
【解析】(1)連結(jié)AC,推導(dǎo)出PA⊥BC,BC⊥PB,從而BC⊥平面PAB,由此能證明AB⊥BC.(2)推導(dǎo)出AB⊥BC,∠ABD=30°,由此能求出AB.(3)分別以BC,BA所在直線為x,y軸,過B且平行PA的直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面BDE與平面ABP所成二面角的正弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的性質(zhì)的相關(guān)知識,掌握垂直于同一個平面的兩條直線平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,則f(2)的值為(
A.
B.2
C.
D.a2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 x﹣1(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x0)= , ,求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單位正方體ABCD﹣A1B1C1D1中,O是B1D1的中點(diǎn),如圖建立空間直角坐標(biāo)系.
(1)求證:B1C∥平面ODC1;
(2)求異面直線B1C與OD夾角的余弦值;
(3)求直線B1C到平面ODC1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣3ax)對任意的x1 , x2∈[ ,+∞),x1≠x2時都滿足 <0,則實(shí)數(shù)a的取值范圍是( )
A.(0,1)
B.(0, ]
C.(0, )
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足2<x≤3.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是矩形, 平面, 是等腰三角形, , 是的一個三等分點(diǎn)(靠近點(diǎn)),的延長線與的延長線交于點(diǎn),連接.
(1)求證: ;
(2)求證:在線段上可以分別找到兩點(diǎn), ,使得直線平面,并分別求出此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線x﹣2y=0上.
(1)若圓C與y軸的正半軸相切,且該圓截x軸所得弦的長為2 ,求圓C的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,直線l:y=﹣2x+b與圓C交于兩點(diǎn)A,B,若以AB為直徑的圓過坐標(biāo)原點(diǎn)O,求實(shí)數(shù)b的值;
(3)已知點(diǎn)N(0,3),圓C的半徑為3,且圓心C在第一象限,若圓C上存在點(diǎn)M,使MN=2MO(O為坐標(biāo)原點(diǎn)),求圓心C的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(2,1)
(1)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程;
(2)若直線l與x正半軸、y正半軸分別交于A,B兩點(diǎn),且△ABO的面積為4,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com