3.已知函數(shù)$f(x)=\left\{\begin{array}{l}2\sqrt{x-1},({x≥2})\\ 2,({1≤x<2})\end{array}\right.$,若方程f(x)=ax+1恰有一個(gè)解時(shí),則實(shí)數(shù)a的取值范圍$(0,\frac{1}{2})∪({\frac{{-1+\sqrt{5}}}{2},1}]$.

分析 由題意作函數(shù)$f(x)=\left\{\begin{array}{l}2\sqrt{x-1},({x≥2})\\ 2,({1≤x<2})\end{array}\right.$與y=ax+1的圖象,利用斜率公式求求直線n,l的斜率,利用導(dǎo)數(shù)求直線m的斜率,從而解得.

解答 解:作函數(shù)$f(x)=\left\{\begin{array}{l}2\sqrt{x-1},({x≥2})\\ 2,({1≤x<2})\end{array}\right.$與y=ax+1的圖象如下,

y=ax+1恒過點(diǎn)(0,1),
當(dāng)直線y=ax+1過點(diǎn)(2,2)時(shí),則$a=\frac{1}{2}$,滿足方程有兩個(gè)解;
當(dāng)直線y=ax+1與$f(x)=2\sqrt{x-1}$相切時(shí),則$a=\frac{{-1+\sqrt{5}}}{2}$,滿足方程有兩個(gè)解;
直線l的斜率為a=$\frac{2-1}{1-0}$=1,
故所求范圍為$(0,\frac{1}{2})∪({\frac{{-1+\sqrt{5}}}{2},1}]$,
故答案為:$(0,\frac{1}{2})∪({\frac{{-1+\sqrt{5}}}{2},1}]$.

點(diǎn)評 本題考查了導(dǎo)數(shù)的幾何意義的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了方程的根與函數(shù)的圖象的關(guān)系應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.利用定義求sin$\frac{5π}{4}$、cos$\frac{5π}{4}$、tan$\frac{5π}{4}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在正三棱柱中,AB=6,BB1=5.求它的側(cè)面積、體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列命題:
①函數(shù)f(x)=$\frac{{\sqrt{|{x-2}|-1}}}{{{{log}_2}(x-1)}}$的定義域?yàn)閇3,+∞);
②將函數(shù)y=tanx圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把圖象向左平移$\frac{2π}{3}$個(gè)單位,得到g(x)的圖象,則g(x)的單調(diào)遞增區(qū)間是$(kπ-\frac{5π}{3},kπ+\frac{π}{3})(k∈Z)$;
③已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{10}^{-x}}-2,x≤0}\\{2ax-1,x>0}\end{array}}$(a是常數(shù)且a>0),若f(x)>0在$[\frac{1}{2},+∞)$上恒成立,則a的取值范圍是[1,+∞);
④已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{10}^{-x}}-2,x≤0}\\{2ax-1,x>0}\end{array}}$(a是常數(shù)且a>0),對任意的x1,x2<0且x1≠x2,恒有$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
⑤已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^3},x≤a}\\{{x^2},x>a}\end{array}}$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則a的取值范圍是a<0或a>1.
其中正確命題的序號是①④⑤.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某四棱錐的三視圖如圖所示,該四棱錐的體積是( 。
A.32B.$\frac{32}{3}$C.48D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知正方形ABCD的邊長為2,E為CD的中點(diǎn),則$\overrightarrow{AC}•\overrightarrow{BE}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知x∈R,設(shè)$\vec m=(2cosx\;,\;sinx+cosx)$,$\vec n=(\sqrt{3}sinx\;,\;sinx-cosx)$,記函數(shù)$f(x)=\vec m•\vec n$.
(1)求函數(shù)f(x)取最小值時(shí)x的取值范圍;
(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若f(C)=2,$c=\sqrt{3}$,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i為虛數(shù)單位,復(fù)數(shù)$\frac{2+4i}{i}$=( 。
A.4-2iB.4+2iC.-4-2iD.-4+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中角A,B,C所對的邊分別是a,b,c,b=$\sqrt{2}$,c=1,cosB=$\frac{3}{4}$.
(1)求sinC的值;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案