1.如圖,某幾何體的正視圖和側(cè)視圖都是正三角形,俯視圖是圓,若該幾何體的表面積S=π,則它的體積V=(  )
A.πB.$\frac{π}{3}$C.$\frac{π}{9}$D.$\frac{π}{27}$

分析 由三視圖知該幾何體是一個圓錐,設(shè)底面圓的半徑為r,由正視圖可得母線長是2r,由題意和圓錐的表面積公式列出方程求出r,由錐體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是一個圓錐,
設(shè)底面圓的半徑為r,由正視圖可得母線長是2r,
∵該幾何體的表面積S=π,∴πr2+πr•(2r)=π,
解得r=$\frac{\sqrt{3}}{3}$,
則圓錐的高h=$\sqrt{(2r)^{2}-{r}^{2}}$=$\sqrt{3}r$=1,
∴幾何體的體積V=$\frac{1}{3}π{r}^{2}h$=$\frac{1}{3}×π×\frac{1}{3}×1$=$\frac{π}{9}$,
故選:C.

點評 本題考查由三視圖求幾何體的體積及表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知:多面體ABCDEF中,四邊形ABCD為直角梯形,AB⊥BC,AB=BC=2AD=2,平面BCEF⊥平面ABCD,四邊形BCEF為等腰梯形,EF=1,EC⊥AF,EF∥BC.
(1)求:E到平面ABCD的距離;
(2)求:二面角A-ED-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一個棱錐的三視圖及其尺寸如圖所示,則該幾何體的體積為( 。
A.16B.24C.30D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知三棱錐A-BCD中,AD⊥面ABC,∠BAC=120°,AB=AD=AC=2,求該棱錐的外接球半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)g(x)=alnx+$\frac{1}{2}$x2+(1-b)x.
(Ⅰ)若g(x)在點(1,g(1))處的切線方程為8x-2y-3=0,求a,b的值;
(Ⅱ)若b=a+1,x1,x2是函數(shù)g(x)的兩個極值點,求證:g(x1)+g(x2)+4<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.骨質(zhì)疏松癥被稱為“靜悄悄的流行病“,早期的骨質(zhì)疏松癥患者大多數(shù)無明顯的癥狀,針對中學校園的學生在運動中骨折事故頻發(fā)的現(xiàn)狀,教師認為和學生喜歡喝碳酸飲料有關(guān),為了驗證猜想,學校組織了一個由學生構(gòu)成的興趣小組,聯(lián)合醫(yī)院檢驗科,從高一年級中按分層抽樣的方法抽取50名同學 (常喝碳酸飲料的同學30,不常喝碳酸飲料的同學20),對這50名同學進行骨質(zhì)檢測,檢測情況如表:(單位:人)
有骨質(zhì)疏松癥狀無骨質(zhì)疏松癥狀總計
常喝碳酸飲料的同學22830
不常喝碳酸飲料的同學81220
總計302050
(1)能否據(jù)此判斷有97.5%的把握認為骨質(zhì)疏松癥與喝碳酸飲料有關(guān)?
(2)現(xiàn)從常喝碳酸飲料且無骨質(zhì)疏松癥狀的8名同學中任意抽取兩人,對他們今后是否有骨質(zhì)疏松癥狀情況進行全程跟蹤研究,記甲、乙兩同學被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
      
A.B.C.3π+4D.2π+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,點E、F、G分別為棱AB、BC、PD的中點,平面AEG與線段PC、PF、PB分別交于點H、I、J,且PA=AD=2.
(1)證明:AE∥GH;
(2)求直線EF與平面AEG所成角的大小,并求線段PI的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2^x}&{({x≤2})}\\{{{log}_{\frac{1}{2}}}x}&{({x>2})}\end{array}}$,則函數(shù)y=f(1-x)的最大值為4.

查看答案和解析>>

同步練習冊答案