【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)的圖像與軸相切,求證:對于任意互不相等的正實數(shù),,都有.

【答案】(1)見解析;(2)見證明

【解析】

(1)先對函數(shù)求導,分別討論,即可得出結(jié)果;

2)結(jié)合(1)的結(jié)果,得到時,上單調(diào)遞增,不滿足條件;當時,得到的極大值,再由函數(shù)的圖像與軸相切,求出,將原問題轉(zhuǎn)為證明即可,再構(gòu)造函數(shù),用導數(shù)的方法判斷其單調(diào)性,結(jié)合條件,即可得出結(jié)論成立.

(1)函數(shù)的定義域為 ,.

時, ,上單調(diào)遞增;

時,由,得 .

,,單調(diào)遞增;

,單調(diào)遞減

綜合上述:當時,上單調(diào)遞增;

時,單調(diào)遞增,在上單調(diào)遞減.

(2)由(Ⅰ)知,當時,上單調(diào)遞增,不滿足條件;

時,的極大值為,

由已知得 ,故 ,此時.

不妨設(shè),則

等價于 ,即證:

, 則

單調(diào)遞減,所以.

所以對于任意互不相等的正實數(shù),都有 成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年3月2日,昌平 “回天”地區(qū)開展了種不同類型的 “三月雷鋒月,回天有我”社會服務(wù)活動. 其中有種活動既在上午開展、又在下午開展, 種活動只在上午開展,種活動只在下午開展 . 小王參加了兩種不同的活動,且分別安排在上、下午,那么不同安排方案的種數(shù)是___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圍建一個面積為40平方米的矩形場地,要求矩形場地的一面利用舊墻(舊墻足夠長),利用的舊墻需維修,其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2米的進出口,如圖所示,已知舊墻的維修費用為5/米,新墻的造價為20/米,設(shè)利用的舊墻的長度為(單位:米),修建此矩形場地圍墻的總費用為(單位:元)

1)將表示為的函數(shù);

2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,,側(cè)面底面,D是棱的中點.

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司在當?shù)?/span>、兩家超市各有一個銷售點,每日從同一家食品廠一次性購進一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調(diào)配食品不計費用,若進貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):

銷售件數(shù)

8

9

10

11

頻數(shù)

20

40

20

20

以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購進食品的件數(shù).

(1)求的分布列;

(2)以銷售食品利潤的期望為決策依據(jù),在之中選其一,應(yīng)選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:

1)求:

2)猜想數(shù)列的通項公式,并用數(shù)學歸納法證明;

3)若對于恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是關(guān)于的方程的兩個虛數(shù)根,若、在復平面上對應(yīng)的點構(gòu)成直角三角形,那么實數(shù)_______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是給定的平面向量,且為非零向量,關(guān)于的分解,有如下個命題:

給定向量,總存在向量,使得;

給定不共線向量,總存在實數(shù),使得;

給定向量和整數(shù),總存在單位向量和實數(shù),使得;

給定正數(shù),總存在單位向量和單位向量,使得;

若上述命題中的向量在同一平面內(nèi)且兩兩不共線,則其中真命題的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求的最小值;

(Ⅱ)若有兩個零點,求參數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案