分析 若P成立,則△>0.若q成立,不等式x+$\frac{m}{x}$-2>0在x∈[2,+∞)上恒成立,即:m>-x2+2x在x∈[2,+∞)上恒成立,利用二次函數(shù)的單調(diào)性即可得出.由¬p為真命題,p∧q為真命題,可知p假q真,即可得出.
解答 解:若P成立,則△=m2-4>0,解得m<-2或m>2;
若q成立,不等式x+$\frac{m}{x}$-2>0在x∈[2,+∞)上恒成立,
即:m>-x2+2x在x∈[2,+∞)上恒成立,
設(shè)f(x)=-x2+2x,則f(x)=-(x-1)2+1,當x=2時,f(x)max=f(2)=0,∴m>0.
∵¬p為真命題,p∧q為真命題,可知p假q真,
∴0<m≤2.
故m的取值區(qū)間為(0,2].
點評 本題考查了不等式的解法、二次函數(shù)的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x0∈(-4,-3) | B. | x0∈(-3,-2) | C. | x0∈(-2,-1) | D. | x0∈(-1,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1(x≠0) | B. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1(x≠0) | ||
C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1(x≠0) | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com