16.已知△ABC的周長為18,且頂點(diǎn)B(0,-4),C(0,4),則頂點(diǎn)A的軌跡方程為(  )
A.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1(x≠0)B.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1(x≠0)
C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1(x≠0)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠0)

分析 根據(jù)三角形的周長和定點(diǎn),得到點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,得到點(diǎn)A的軌跡是橢圓,橢圓的焦點(diǎn)在y軸上,寫出橢圓的方程,去掉不合題意的點(diǎn).

解答 解:∵△ABC的周長為18,頂點(diǎn)B (0,-4),C (0,4),
∴BC=8,AB+AC=18-8=10,
∵120>8
∴點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,
∴點(diǎn)A的軌跡是橢圓,
∵a=5,c=4
∴b2=9,
∴橢圓的方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1(x≠0).
故選:C.

點(diǎn)評(píng) 本題考查橢圓的定義,注意橢圓的定義中要檢驗(yàn)兩個(gè)線段的大小,看能不能構(gòu)成橢圓,本題是一個(gè)易錯(cuò)題,容易忽略掉不合題意的點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的兩個(gè)焦點(diǎn)是F1(-2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點(diǎn)$A(0,\sqrt{5})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)若過左焦點(diǎn)F1且傾斜角為45°的直線l與橢圓C交于P、Q兩點(diǎn),求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.拋物線y2=4x的焦點(diǎn)F關(guān)于直線y=2x的對(duì)稱點(diǎn)坐標(biāo)為(-$\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=mlnx(m∈R).
(1)若函數(shù)y=f(x)+x的最小值為0,求m的值;
(2)設(shè)函數(shù)g(x)=f(x)+mx2+(m2+2)x,試求g(x)的單調(diào)區(qū)間;
(3)試給出一個(gè)實(shí)數(shù)m的值,使得函數(shù)y=f(x)與h(x)=$\frac{x-1}{2x}$(x>0)的圖象有且只有一條公切線,并說明此時(shí)兩函數(shù)圖象有且只有一條公切線的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-x+a,g(x)=e-x+x+a2,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x∈[0,2],使得f(x)-g(x)<0成立,求a的取值范圍;
(3)設(shè)x1,x2(x1≠x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),求證x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知p:方程x2+mx+1=0有兩個(gè)不相等的實(shí)根;q:不等式x+$\frac{m}{x}$-2>0在x∈[2,+∞)上恒成立,若¬p為真命題,p∧q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C1:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1,圓C2:x2+y2=4.過橢圓C1上點(diǎn)P作圓C2的兩條切線,切點(diǎn)為A,B.
(1)當(dāng)點(diǎn)P的坐標(biāo)為(-2,2)時(shí),求直線AB的方程;
(2)當(dāng)點(diǎn)P(x0,y0)在橢圓上運(yùn)動(dòng)但不與橢圓的頂點(diǎn)重合時(shí),設(shè)直線AB與坐標(biāo)軸圍成的三角形面積為S,問S是否存在最小值?如果存在,請(qǐng)求出這個(gè)最小值.并求出此時(shí)點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1外一點(diǎn)A(5,6),直線l方程為x=-$\frac{25}{3}$,P為橢圓上動(dòng)點(diǎn),點(diǎn)P到l的距離為d,則|PA|+$\frac{3}{5}$d的最小值是( 。
A.10B.8C.12D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在斜四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上射影為△ABD的重心G.
(1)求證:平面ACC1A1⊥平面BDD1B1
(2)求直線CC1與平面A1BC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案