【題目】若函數(shù)f(x)=x3﹣a的圖象不經(jīng)過第二象限,則實數(shù)a的取值范圍是

【答案】[0,+∞)
【解析】∵函數(shù)f(x)單調(diào)遞增,
∴要使f(x)=f(x)=x3﹣a的圖象不經(jīng)過第二象限,
則f(0)≤0,即可,
即f(0)=﹣a≤0,
解得a≥0,
故a的取值范圍為[0,+∞)
所以答案是:[0,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“x<2”是“x2<4”的(
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有.
①函數(shù)關(guān)系是一種確定性關(guān)系;②相關(guān)關(guān)系是一種非確定性關(guān)系;③回歸分析是對具有函數(shù)關(guān)系的兩個變量進行統(tǒng)計分析的一種方法;④回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內(nèi)戰(zhàn)平,直接進入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派出一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場),由于一班同學(xué)平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中率只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.
(1)定義事件A為“一班第三位同學(xué)沒能出場罰球”,求事件A發(fā)生的概率;
(2)若兩隊在前三輪點球結(jié)束后打平,則進入一對一點球決勝,一對一點球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某隊隊員射入點球且另一隊隊員未能射入,則比賽結(jié)束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽.若直至雙方場上每名隊員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方用過抽簽決定勝負,以隨機變量X記錄雙方進行一對一點球決勝的輪數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1},若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知映射f:(x,y)→(x﹣2y,2x+x),則(2,4)→ , →(﹣5,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知(1+x)(1﹣2x)6=a0+a1(x﹣1)+a2(x﹣1)2+…+a7(x﹣1)7 , 則a3=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的是( ) ①圓的平行射影可以是橢圓,但橢圓的平行射影不可能是圓;②平行四邊形的平行射影仍然是平行四邊形;③兩條平行線段之比等于它們的平行射影(不是點)之比;④圓柱與平面的截面可以看作是底面的平行射影,反之亦然.
A.①②
B.②③
C.③④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人射擊一次,設(shè)事件A:“中靶”;事件B:“擊中環(huán)數(shù)大于5”;事件C:“擊中環(huán)數(shù)大于1且小于6”;事件D:“擊中環(huán)數(shù)大于0且小于6”,則正確的關(guān)系是(
A.B與C為互斥事件
B.B與C為對立事件
C.A與D為互斥事件
D.A與D為對立事件

查看答案和解析>>

同步練習(xí)冊答案