19.已知數(shù)列{an}的奇函數(shù)和偶數(shù)項分別為公差3d和d(d≠0)的等數(shù)數(shù)列,已知a1=1,a2=2,且存在不相等的正整數(shù)m、n使得am=an,則當(dāng)d最大時,數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n為奇數(shù)}\\{\frac{n}{2}+1,n為偶數(shù)}\end{array}\right.$.

分析 若d1=3d2(d1≠0),且存在正整數(shù)m、n(m≠n),使得am=an,在m,n中必然一個是奇數(shù),一個是偶數(shù).不妨設(shè)m為奇數(shù),n為偶數(shù),利用am=an,d=$\frac{6}{3m-n-1}$,從而可求當(dāng)d最大時,數(shù)列{an}的通項公式.

解答 解:若存在正整數(shù)m、n(m≠n),使得am=an,在m,n中必然一個是奇數(shù),一個是偶數(shù)
不妨設(shè)m為奇數(shù),n為偶數(shù)
∵am=an,∴1+$\frac{m-1}{2}×3d$=2+($\frac{n}{2}$-1)d,
∴d=$\frac{6}{3m-n-1}$
∵m為奇數(shù),n為偶數(shù),∴3m-n-1的最小正值為2,此時d=3,
∴數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n為奇數(shù)}\\{\frac{n}{2}+1,n為偶數(shù)}\end{array}\right.$.
故答案為:an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n為奇數(shù)}\\{\frac{n}{2}+1,n為偶數(shù)}\end{array}\right.$.

點評 本題考查數(shù)列的通項,考查學(xué)生分析解決問題的能力,確定數(shù)列的公差是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.二項展開式(-$\frac{1}{x}$+2x25中,含x4項的系數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)向量$\overrightarrow{a}$=(sinx,cos2x),$\overrightarrow$=(sin2x,cosx).
(1)設(shè)$f(x)=\overrightarrow a•\overrightarrow b+sinx$,當(dāng)$x∈(0,\frac{π}{2})$時,求f(x)的取值范圍;
(2)構(gòu)建兩個集合A={sinx,cos2x},B={sin2x,cosx},若集合A=B,求滿足條件的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-1|+|x-3|+|x-a|.
(Ⅰ)當(dāng)a=1時,求不等式f(x)<4的解集;
(Ⅱ)設(shè)函數(shù)f(x)的最小值為g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.記x2-x1為區(qū)間[x1,x2]的長度.已知函數(shù)y=2|x|,x∈[-2,a](a≥0),其值域為[m,n],則區(qū)間[m,n]的長度的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系中,曲線C:$\left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.$(t為參數(shù))與y軸交于點A,在以原點為極點,x軸的正半軸為極軸且單位長度相同的極坐標(biāo)系中曲線E的方程為ρ-2sinθ=0,則A與曲線E上的點的距離的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax+ln(x-1),其中a為常數(shù).
(Ⅰ)試討論f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=$\frac{1}{1-e}$時,存在x使得不等式|f(x)|-$\frac{e}{e-1}$≤$\frac{2lnx+bx}{2x}$成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知梯形ABCD中,BC∥AD,AB=BC=$\frac{1}{2}$AD=1,且∠ABC=90°,以AC為折痕使得折疊后的圖形中平面DAC⊥ABC.
(1)求證:DC⊥平面ABC;
(2)求四面體ABCD的外接球的體積;
(3)在棱AD上是否存在點P,使得AD⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z≠-1,則“|z|=1”是“$\frac{z-1}{z+1}$是純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案