【題目】如圖,四邊形ABCD是邊長(zhǎng)為4的菱形,∠BAD=60°,對(duì)角線AC與BD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)取AO中點(diǎn)H,連結(jié)EH,則EH⊥BD,又AC⊥BD,由此可證;
(Ⅱ)以H為原點(diǎn),HA為x軸,在平面ABCD中過H作AC的垂線為y軸,HE為z軸,建立空間直角坐標(biāo)系,由(Ⅰ)知,∠EAH為AE與平面ABCD所成的角,再根據(jù)平面的法向量的夾角即可求出答案.
(Ⅰ)證:取AO中點(diǎn)H,連結(jié)EH,則EH⊥平面ABCD,
∵BD在平面ABCD內(nèi),∴EH⊥BD,
又菱形ABCD中,AC⊥BD,且EH∩AC=H,
EH,AC在平面EACF內(nèi),
∴BD⊥平面EACF,
∴BD⊥平面ACF;
(Ⅱ)解:由(Ⅰ)知EH⊥平面ABCD,
∴以H為原點(diǎn),HA為x軸,在平面ABCD中過H作AC的垂線為y軸,HE為z軸,建立空間直角坐標(biāo)系,
∵EH⊥平面ABCD,∴∠EAH為AE與平面ABCD所成的角,即∠EAH=45°,
∵AB=4,∴AO=2,AH,EH,
∴H(0,0,0),A(,0,0),D(,﹣2,0),O(,0,0),E(0,0,),
平面ABCD的法向量(0,0,1),
(﹣2,0,0),(),
∵EFAC,∴(﹣2λ,0,0),
設(shè)平面DEF的法向量(x,y,z),
則,取y,得(0,,﹣2),
∴,
∴平面DEF與平面ABCD所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實(shí)數(shù)a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面向量,共線的充要條件是( )
A.
B.,兩向量中至少有一個(gè)為零向量
C.λ∈R,
D.存在不全為零的實(shí)數(shù)λ1,λ2,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義域?yàn)?/span>的偶函數(shù),對(duì),有,且當(dāng)時(shí),,函數(shù).現(xiàn)給出以下命題:①是周期函數(shù);②的圖象關(guān)于直線對(duì)稱;③當(dāng)時(shí),在內(nèi)有一個(gè)零點(diǎn);④當(dāng)時(shí),在上至少有六個(gè)零.其中正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放40年來,我國城市基礎(chǔ)設(shè)施發(fā)生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實(shí)行的是早九晚五的工作時(shí)間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時(shí)間Z1(單位:分鐘)服從正態(tài)分布N(33,42),下車后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時(shí)間Z2(單位:分鐘)服從正態(tài)分布N(44,22),從地鐵站步行到單位需要5分鐘.現(xiàn)有下列說法:①若8:00出門,則乘坐公交一定不會(huì)遲到;②若8:02出門,則乘坐公交和地鐵上班遲到的可能性相同;③若8:06出門,則乘坐公交比地鐵上班遲到的可能性大;④若8:12出門,則乘坐地鐵比公交上班遲到的可能性大.則以上說法中正確的序號(hào)是_____.
參考數(shù)據(jù):若Z~N(μ,σ2),則P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照水果市場(chǎng)的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級(jí).某商家計(jì)劃從該種植戶那里購進(jìn)一批這種水果銷售.為了了解這種水果的質(zhì)量等級(jí)情況,現(xiàn)隨機(jī)抽取了100個(gè)這種水果,統(tǒng)計(jì)得到如下直徑分布表(單位:mm):
d | |||||
等級(jí) | 三級(jí)品 | 二級(jí)品 | 一級(jí)品 | 特級(jí)品 | 特級(jí)品 |
頻數(shù) | 1 | m | 29 | n | 7 |
用分層抽樣的方法從其中的一級(jí)品和特級(jí)品共抽取6個(gè),其中一級(jí)品2個(gè).
(1)估計(jì)這批水果中特級(jí)品的比例;
(2)已知樣本中這批水果不按等級(jí)混裝的話20個(gè)約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:
方案A:以6.5元/斤收購;
方案B:以級(jí)別分裝收購,每袋20個(gè),特級(jí)品8元/袋,一級(jí)品5元/袋,二級(jí)品4元/袋,三級(jí)品3元/袋.
用樣本的頻率分布估計(jì)總體分布,問哪個(gè)方案種植戶的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年情況特殊,小王在居家自我隔離時(shí)對(duì)周邊的水產(chǎn)養(yǎng)殖產(chǎn)業(yè)進(jìn)行了研究.、兩個(gè)投資項(xiàng)目的利潤率分別為投資變量和.根據(jù)市場(chǎng)分析,和的分布列分別為:
5% | 10% | |||
0.8 | 0.2 | |||
2% | 8% | 12% | ||
0.2 | 0.5 | 0.3 | ||
(1)若在兩個(gè)項(xiàng)目上各投資萬元,和分別表示投資項(xiàng)目和所獲得的利潤,求方差,;
(2)若在兩個(gè)項(xiàng)目上共投資萬元,那么如何分配,能使投資項(xiàng)目所得利潤的方差與投資項(xiàng)目所得利潤的方差的和最小,最小值是多少?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意,給定區(qū)間,設(shè)函數(shù)表示實(shí)數(shù)與所屬的給定區(qū)間內(nèi)唯一整數(shù)之差的絕對(duì)值.
(1)當(dāng)時(shí),求出的解析式;時(shí),寫出絕對(duì)值符號(hào)表示的解析式;
(2)求,,判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)當(dāng)時(shí),求方程的實(shí)根.(要求說明理由,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com