12.f(x)是定義在(-∞,+∞)上的偶函數(shù),且在 (-∞,0]上是增函數(shù),設(shè)a=f(log47),b=f(${log_{\frac{1}{2}}}3$),c=f(0.20.6),則a,b,c大小關(guān)系是c>a>b.

分析 對于偶函數(shù),有f(x)=f(|x|),在[0,+∞)上是減函數(shù),所以,只需比較自變量的絕對值的大小即可,即比較3個(gè)正數(shù)|log23|、|log47|、|0.20.6|的大小,這3個(gè)正數(shù)中越大的,對應(yīng)的函數(shù)值越。

解答 解:f(x)是定義在(-∞,+∞)上的偶函數(shù),且在 (-∞,0]上是增函數(shù),
故f(x)在[0,+∞)上是減函數(shù),
∵a=f(log47),b=f(${log_{\frac{1}{2}}}3$),c=f(0.20.6),
∵log47=log2$\sqrt{7}$>1,∵${log_{\frac{1}{2}}}3$=-log23=-log49<-1,0<0.20.6<1,
∴|log23|>|log47|>|0.20.6|>0,∴f(0.20.6)>f( log47)>f(${log_{\frac{1}{2}}}3$),即 c>a>b,
故答案為:c>a>b.

點(diǎn)評 本題考查偶函數(shù)的性質(zhì),函數(shù)單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將參加夏令營的600名學(xué)生編號(hào)為:001,002,…,600,采用系統(tǒng)抽樣方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽得的號(hào)碼為003.這600名學(xué)生分住在三個(gè)營區(qū),從001到240在第一營區(qū),從241到496為第二個(gè)營區(qū),從497到600為第三營區(qū),則第二營區(qū)被抽中的人數(shù)為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù) y=x2+2(a-1)x+5在區(qū)間(4,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.a≤-2B.a≥-3C.a≤-6D.a≥-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點(diǎn)A(1,2,3)、B(2,-1,4),點(diǎn)P在y軸上,且|PA|=|PB|,則點(diǎn)P的坐標(biāo)是(0,-$\frac{7}{6}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算:
(1)log327+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0
(2)($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$-$\root{3}{π}$×π${\;}^{\frac{2}{3}}$+$\sqrt{(2-π)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果實(shí)數(shù)x,y滿足(x-2)2+y2=3,那么$\frac{y}{x}$的取值范圍為( 。
A.(-$\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}$)B.[-$\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}$]C.[$-\sqrt{3},\sqrt{3}$]D.(-$\sqrt{3},\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.記 min{p,q}=$\left\{\begin{array}{l}{p,p≤q}\\{q,p>q}\end{array}\right.$,若函數(shù)f(x)=min{3+log${\;}_{\frac{1}{4}}$x,log2x}.
(Ⅰ)用分段函數(shù)形式寫出函數(shù)f(x)的解析式;
(Ⅱ)求不等式f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列命題,其中正確命題的個(gè)數(shù)為( 。
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=$\sqrt{x}$,y=(x-1)2,y=x3中有三個(gè)增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱;
④若函數(shù)f(x)=3x-2x-3,則方程f(x)=0有兩個(gè)實(shí)數(shù)根.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)滿足f(5x)=x,則f(2)=log52.

查看答案和解析>>

同步練習(xí)冊答案