分析 (Ⅰ)問題轉(zhuǎn)化為a-ax+x2≥0恒成立,根據(jù)韋達(dá)定理得到不等式,解出即可;(Ⅱ)問題等價于λ(x)=a-ax+x2≥0在[2,3]上恒成立,得到不等式組,解出即可.
解答 解:(Ⅰ) f(x)的定義域為R,相當(dāng)于任意實數(shù)x,
使a-ax+x2≥0恒成立,即△≤0成立,解得0≤a≤4;
(Ⅱ)f(x)在區(qū)間[2,3]上有意義,
等價于λ(x)=a-ax+x2≥0在[2,3]上恒成立,
則$\left\{\begin{array}{l}{\frac{a}{2}≤2}\\{λ(2)≥0}\end{array}\right.$,解得:a≤4,
或$\left\{\begin{array}{l}{2<\frac{a}{2}<3}\\{△≤0}\end{array}\right.$,無解,
或$\left\{\begin{array}{l}{\frac{a}{2}≥3}\\{λ(3)≥0}\end{array}\right.$,無解;
總之,a≤4.
點評 本題考查了函數(shù)恒成立問題,考查二次函數(shù)的性質(zhì),是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y-1=3(x-3) | B. | y-1=-3(x-3) | C. | y-3=3(x-1) | D. | y-3=-3(x-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com