設(shè)集合A={1,2,4},B={2,6},則A∩B=
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由A與B,求出兩集合的交集即可.
解答: 解:∵A={1,2,4},B={2,6},
∴A∩B={2}.
故答案為:{2}
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0)經(jīng)過(guò)點(diǎn)(2,4),A,B為拋物線C上異于坐標(biāo)原點(diǎn)O的兩個(gè)動(dòng)點(diǎn),且滿足
OA
OB
=0.
(Ⅰ)求拋物線C的方程;
(Ⅱ)求證:直線AB恒過(guò)定點(diǎn)(2p,0);
(Ⅲ)若線段AB的中垂線經(jīng)過(guò)點(diǎn)(16,0),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-xlx,g(x)=f(x)-xf′(a).(其中f′(a)表示函數(shù)f(x)在x=a處的導(dǎo)數(shù),a為正常數(shù))
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意的正實(shí)數(shù)x1x2,且x1<x2,證明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(Ⅲ)若對(duì)任意的n∈N*,且n≥3時(shí),有l(wèi)n2•lnn≤ln(2+k)•ln(n-k),其中k=1,2,…n-2.求證:
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一程序框圖如圖所示,若該程序運(yùn)行后,輸出n的值為32,則該程序框圖中①處應(yīng)該填的整數(shù)值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2x,則f(x)在[4,256]上的最大值是最小值的
 
倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若f(x)是奇函數(shù),則f(-x)是奇函數(shù)”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

焦點(diǎn)在軸x上的橢圓方程為
x2
a2
+y2=1(a>0),F(xiàn)1、F2是橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)B,使得∠F1BF2=
π
2
,那么實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足
3x-y-6≤0
x-y+2≥0
x+y≥3
,則目標(biāo)函數(shù)z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0.5x>2,則實(shí)數(shù)x的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案