14.解下列不等式:
(1)|x-8|<0;
(2)|3x一2|≥7.

分析 直接轉(zhuǎn)化絕對(duì)值不等式為代數(shù)不等式,求解即可.

解答 解:(1)|x-8|<0;可得x∈∅.
(2)|3x一2|≥7.可得3x-2≥7或3x-2≤-7,
解得x≥3或x≤-$\frac{5}{3}$.
不等式的解集為:{x|x≥3或x≤-$\frac{5}{3}$}.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列的值:
(1)若f(x)=x2+lnx,求f′(2)
(2)函數(shù)y=$\frac{sinx}{x}$的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.證明對(duì)任意k,方程x2+(kx-2)2=$\frac{1}{{x}^{2}}$恒有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知A為直線x+y-11=0上的動(dòng)點(diǎn),MN為圓(x-1)2+y2=1的一條直徑,則$\overrightarrow{AM}$$•\overrightarrow{AN}$的最小值為49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是( 。
A.y=3${\;}^{\frac{2}{x}}$B.y=$\sqrt{{2}^{x}-1}$C.y=$\sqrt{{2}^{x}+1}$D.y=($\frac{1}{2}$)2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算:0.75-1+$(\frac{\sqrt{3}}{2})^{\frac{1}{2}}$×$(6\frac{3}{4})^{\frac{1}{4}}$+11($\sqrt{3}-2$)-1+$(\frac{1}{300})^{-\frac{1}{2}}$+${4}^{\frac{1}{4}}$+$\sqrt{5-2\sqrt{6}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=2x+2-3•4x在[-1,0]上的最大值是$\frac{4}{3}$,最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lo{g}_{3}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,則f(3)=-1,f(f(9))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義在R上的函數(shù)f(x)=2x+$\frac{a}{{2}^{x}}$+1,a為常數(shù),若f(x)為偶函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在(0,+∞)內(nèi)的單調(diào)性,并用單調(diào)性定義給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案