17.經(jīng)過(guò)點(diǎn)A(1,1),且與直線l:3x-2y+1=0平行的直線方程為3x-2y-1=0.

分析 設(shè)經(jīng)過(guò)點(diǎn)A(1,1),且與直線l:3x-2y+1=0平行的直線方程為3x-2y+c=0,把點(diǎn)A(1,1)代入,能求出直線方程.

解答 解:設(shè)經(jīng)過(guò)點(diǎn)A(1,1),且與直線l:3x-2y+1=0平行的直線方程為3x-2y+c=0,
把點(diǎn)A(1,1)代入,得:
3-2+c=0,
解得c=-1,
∴所求直線方程為:3x-2y-1=0.
故答案為:3x-2y-1=0.

點(diǎn)評(píng) 本題考查直線方程的求法,解題時(shí)要認(rèn)真審題,注意直線平行的條件的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=sin(x-$\frac{π}{6}$)圖象的一個(gè)對(duì)稱中心是($\frac{π}{6}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$e=\sqrt{3}$,則它的漸近線方程為y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知拋物線y2=2px(p>0)的焦點(diǎn)F與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點(diǎn)重合,點(diǎn)M是拋物線與雙曲線的一個(gè)交點(diǎn),若MF⊥x軸,則該雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)是F(-c,0),斜率為2的直線l過(guò)點(diǎn)P并與兩條漸近線交于A,B兩點(diǎn)(A,B位于x軸同側(cè)),且S△BOF=4S△AOF,則雙曲線的離心率是( 。
A.$\frac{\sqrt{109}}{3}$B.$\frac{10}{3}$C.3D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某自來(lái)水廠的蓄水池存有400噸水,水廠每小時(shí)可向蓄水池中注入60噸,同時(shí)蓄水池又向居民小區(qū)不間斷供水,t小時(shí)內(nèi)供水總量為$120\sqrt{6t}$噸(0≤t≤24)
(1)設(shè)t小時(shí)后蓄水池中的存水量為y噸,寫(xiě)出y關(guān)于t的函數(shù)表達(dá)式;
(2)求從供水開(kāi)始到第幾小時(shí),蓄水池中的存水量最少?最少水量是多少噸?
(3)若蓄水池中水量少于80噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,請(qǐng)問(wèn):在一天的24小時(shí)內(nèi),有幾小時(shí)出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知M(x0,y0)是雙曲線C:x2-y2=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C上的兩個(gè)焦點(diǎn),若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,則x0的取值范圍是( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(-\sqrt{3},\sqrt{3})$C.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$D.(-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,則該雙曲線的離心率e的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知雙曲線$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦點(diǎn)為F,P為雙曲線C右支上的動(dòng)點(diǎn),A(0,4),則△PAF周長(zhǎng)的最小值為14.

查看答案和解析>>

同步練習(xí)冊(cè)答案