分析 根據(jù)三點共線的條件,建立方程$\overrightarrow{AB}$=t$\overrightarrow{AB}$,利用向量共線的基本定理進(jìn)行求解即可.
解答 解:∵$\overrightarrow{OA}$=-2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=m$\overrightarrow{{e}_{2}}$,$\overrightarrow{OC}$=n$\overrightarrow{{e}_{1}}$,
∴$\overrightarrow{AB}$=$\overrightarrow{OB}$-$\overrightarrow{OA}$=m$\overrightarrow{{e}_{2}}$-(-2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)=2$\overrightarrow{{e}_{1}}$+(m+2)$\overrightarrow{{e}_{2}}$,
$\overrightarrow{AC}$=$\overrightarrow{OC}$-$\overrightarrow{OA}$=n$\overrightarrow{{e}_{1}}$-(-2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)=(2+n)$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,
若A、B、C三點共線,
則存在一個常數(shù)t,
有$\overrightarrow{AB}$=t$\overrightarrow{AC}$,
即2$\overrightarrow{{e}_{1}}$+(m+2)$\overrightarrow{{e}_{2}}$=t((2+n)$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$),
則$\left\{\begin{array}{l}{2=(2+n)t}\\{m+2=2t}\end{array}\right.$,消去參數(shù)t得4t=(n+2)(m+2)t,
即4=(n+2)(m+2),
則mn+2(m+n)=0,
則mn=-2(m+n),
即1=-2($\frac{1}{m}$+$\frac{1}{n}$),
則$\frac{1}{m}$+$\frac{1}{n}$=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$.
點評 本題主要考查三點共線的應(yīng)用,結(jié)合向量共線的基本定理建立方程關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 非p且q | B. | p且q | C. | p且非q | D. | 非p且非q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | R | C. | {x|x≠-$\frac{2a}$} | D. | 與a的正負(fù)有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com