【題目】如圖,一島礁旁有兩條航道,.一日,我方船只甲在航道上巡邏,在與相距50公里的點(diǎn)處,發(fā)現(xiàn)不明身份的船乙剛駛過(guò)點(diǎn),并沿方向以40公里/小時(shí)的速度運(yùn)動(dòng),船甲立即沿方向以公里/小時(shí)()的速度追擊,且甲到達(dá)點(diǎn)即停止前行(乙可繼續(xù)前進(jìn)).設(shè)甲出發(fā)時(shí),經(jīng)過(guò)小時(shí)甲,乙之間的距離為公里,當(dāng)最小時(shí),可以達(dá)到最佳的驅(qū)離距離.

1)試求的解析式,并寫出定義域;

2)求最多經(jīng)過(guò)多長(zhǎng)時(shí)間,我船可以達(dá)到最佳的驅(qū)離距離?

【答案】(1);(2).

【解析】

1)根據(jù)題意,結(jié)合余弦定理,即可容易求得解析式和定義域;

2)根據(jù)(1)中所求,求得的最小值即可.

1)設(shè)經(jīng)過(guò)小時(shí),甲到達(dá)點(diǎn),乙到達(dá)點(diǎn),如下圖所示:

中,,

由余弦定理可得

當(dāng),甲到達(dá)點(diǎn),乙繼續(xù)前進(jìn),故;

綜上所述:,

2)當(dāng)

其對(duì)稱軸為,因?yàn)?/span>,

故可得

當(dāng)時(shí),該函數(shù)是單調(diào)增函數(shù),故.

綜上所述,的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標(biāo)方程為:.且兩曲線交于兩點(diǎn).

1)求曲線的直角坐標(biāo)方程;

2)設(shè),若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)若直線與曲線至多只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;

2)若直線與曲線相交于兩點(diǎn),且,的中點(diǎn)為,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2015年至2019年國(guó)內(nèi)游客人次y(單位:億)的散點(diǎn)圖.

為了預(yù)測(cè)2025年國(guó)內(nèi)游客人次,根據(jù)2015年至2019年的數(shù)據(jù)建立了與時(shí)間變量(時(shí)間變量的值依次為1,2..,5)的3個(gè)回歸模型:①;②;③.其中相關(guān)指數(shù).

1)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.

2)根據(jù)(1)中你選擇的模型預(yù)測(cè)2025年國(guó)內(nèi)游客人次,結(jié)合已有數(shù)據(jù)說(shuō)明數(shù)據(jù)反映出的社會(huì)現(xiàn)象并給國(guó)家相關(guān)部門提出應(yīng)對(duì)此社會(huì)現(xiàn)象的合理化建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開(kāi)始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個(gè)偶數(shù)2,4;再取4后面最鄰近的3個(gè)連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個(gè)連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個(gè)新數(shù)列1,2,4,5,7,9,10,12,14,16,17,,則在這個(gè)新數(shù)列中,由1開(kāi)始的第2 019個(gè)數(shù)是(  )

A. 3 971B. 3 972C. 3 973D. 3 974

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),集合.

(1)當(dāng)時(shí),解不等式;

(2)若,且,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),若函數(shù)的定義域?yàn)?/span>,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,將繞邊AB翻轉(zhuǎn)至,使面ABC,DBC的中點(diǎn),設(shè)Q是線段PA上的動(dòng)點(diǎn),則當(dāng)PCDQ所成角取得最小值時(shí),線段AQ的長(zhǎng)度為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案