【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.

【答案】12

【解析】

利用分層抽樣中的比例,可得工會代表中男教師的總?cè)藬?shù)

高中部女教師與高中部男教師比例為2:3,

按分層抽樣方法得到的工會代表中,高中部女教師有6人,則男教師有9人,

工會代表中高中部教師共有15人,又初中部與高中部總?cè)藬?shù)比例為2:3,

工會代表中初中部教師人數(shù)與高中部教師人數(shù)比例為2:3,

工會代表中初中部教師總?cè)藬?shù)為10,又初中部女教師與高中部男教師比例為7:3,

工會代表中初中部男教師的總?cè)藬?shù)為10×30%=3;

工會代表中男教師的總?cè)藬?shù)為9+3=12,

故答案為12.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點到直線的距離為.

1)求橢圓的方程;

2)過點作直線交橢圓于兩點,交軸于點,滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=的定義域為R,則實數(shù)m取值范圍為

A.{m|–1≤m≤0}B.{m|–1<m<0}

C.{m|m≤0}D.{m|m<–1或m>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復數(shù)字且大于的“完美四位數(shù)”有( )個

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各進行次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率

(Ⅰ)記甲擊中目標的次數(shù)為,求的概率分布及數(shù)學期望;

(Ⅱ)求甲恰好比乙多擊中目標次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,左焦點為,點為橢圓上任一點,若直線的斜率之積為,且橢圓經(jīng)過點.

(1)求橢圓的方程;

(2)交直線兩點,過左焦點作以為直徑的圓的切線.問切線長是否為定值,若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市為調(diào)查會員某年度上半年的消費情況制作了有獎調(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的名會員消費金額(單位:萬元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費金額分成組,制作成如下的頻率分布直方圖.

(1)求該名會員上半年消費金額的平均值與中位數(shù);(以各區(qū)間的中點值代表該區(qū)間的均值)

(2)若再從這名會員中選出一名會員參加幸運大抽獎,幸運大抽獎方案如下:會員最多有兩次抽獎機會,每次抽獎的中獎概率均為,第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋擲一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎.規(guī)定:拋出的硬幣,若反面朝上,則會員獲得元獎金,不進行第二次抽獎;若正面朝上,會員需進行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金元,如果未中獎,則所獲得的獎金為元.若參加幸運大抽獎的會員所獲獎金(單位:元)用表示,求的分布列與期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,離心率.左焦點為,過點且與軸垂直的直線被橢圓截得的線段長為3.

(1)求該橢圓的方程;

(2)過橢圓的左焦點的任意一條直線與橢圓交于兩點,在軸上是否存在定點使得軸平分,若存在,求出定點坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BC,AC的中點,AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

同步練習冊答案