【題目】已知函數(shù),.
(1)求函數(shù)的極值;
(2)對,不等式都成立,求整數(shù)k的最大值;
【答案】(1)極小值為無極大值;(2)3.
【解析】
求出函數(shù)的單調(diào)區(qū)間,然后求解函數(shù)的極值,
問題轉(zhuǎn)化為在上恒成立,令,,再求導(dǎo), 分類討論,利用導(dǎo)數(shù)求出函數(shù)的最值,即可求出k的值.
解:,,
,
當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,,函數(shù)單調(diào)遞增,
當(dāng)時,取得極小值,極小值為無極大值.
,,不等式都成立,
在上恒成立,
即在上恒成立,
令,,
,
當(dāng)時,即時,在上恒成立,
在上單調(diào)遞增,
,
,此時整數(shù)k的最大值為2,
當(dāng)時,令,解得,
當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,,函數(shù)單調(diào)遞增,
,
由,
令,
在上恒成立,
在上單調(diào)遞減,
又,,
存在使得,
故此時整數(shù)k的最大值為3,
綜上所述整數(shù)k的最大值3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對于任意正數(shù),,都有,,且,則稱函數(shù)為“速增函數(shù)”.
(1)試判斷函數(shù)與是否是“速增函數(shù)”;
(2)若函數(shù)為“速增函數(shù)”,求的取值范圍;
(3)若函數(shù)為“速增函數(shù)”,且,求證:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)若函數(shù)為上的單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)()的反函數(shù)為,.
(1)求;
(2)若函數(shù)的圖象與直線有公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域為,函數(shù)的定義域為,值域為.
(1)求定義域和值域;
(2)試用單調(diào)性的定義法解決問題:若存在實數(shù),使得函數(shù)在上單調(diào)遞減,上單調(diào)遞增,求實數(shù)的取值范圍并用表示;
(3)是否存在實數(shù),使成立?若存在,求實數(shù)的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的最大值為,最小值為,則( )
A.存在實數(shù),使
B.存在實數(shù),使
C.對任意實數(shù),有
D.對任意實數(shù),有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是數(shù)列的前項和,對任意都有成立(其中是常數(shù)).
(1)當(dāng)時,求:
(2)當(dāng)時,
①若,求數(shù)列的通項公式:
②設(shè)數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“數(shù)列”,如果,試問:是否存在數(shù)列為“數(shù)列”,使得對任意,都有,且,若存在,求數(shù)列的首項的所有取值構(gòu)成的集合;若不存在.說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,直線:,點在直線上移動,是線段與軸的交點,動點滿足:,.
(1)求動點的軌跡方程;
(2)若直線與曲線交于,兩點,過點作直線的垂線與曲線相交于,兩點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com