11.在直角三棱柱ABC-A1B1C1中,若BC⊥AC,∠BAC=$\frac{π}{3}$,AC=4,AA1=4,M為AA1中點(diǎn),點(diǎn)P為BM中點(diǎn),Q在線段CA1上,且A1Q=3QC,則PQ的長(zhǎng)度為$\sqrt{13}$.

分析 以C為原點(diǎn),CB為x軸,CA為y軸,CC1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PQ的長(zhǎng)度.

解答 解:以C為原點(diǎn),CB為x軸,CA為y軸,CC1為z軸,
建立空間直角坐標(biāo)系,
則由題意得A(0,4,0),C(0,0,0),
B(4$\sqrt{3}$,0,0),M(0,4,2),A1(0,4,4),
P(2$\sqrt{3}$,2,1),$\overrightarrow{CQ}$=$\frac{1}{4}$$\overrightarrow{C{A}_{1}}$=$\frac{1}{4}$(0,4,4)=(0,1,1),
∴Q(0,1,1),
∴PQ的長(zhǎng)度為|PQ|=$\sqrt{(2\sqrt{3}-0)^{2}+(2-1)^{2}+(1-1)^{2}}$=$\sqrt{13}$.
故答案為:$\sqrt{13}$.

點(diǎn)評(píng) 本題考查空間中兩點(diǎn)間距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1(y≠0),其左右焦點(diǎn)分別為F1,F(xiàn)2.對(duì)于命題p:“?點(diǎn)P∈C,∠F1PF2<$\frac{π}{2}$”.寫出?p,判斷?p的真假,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)y=2sin(2x+$\frac{π}{3}$)+1
(1)求最小正周期;
(2)求最值及相應(yīng)x的集合;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)的最值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知直線l過(guò)兩直線l1:2x+3y-9=0和l2:x-2y-1=0的交點(diǎn),且與直線3x+2y-16=0平行,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a23+a2=2014,則a20133+a2013=-2014,則S2014=( 。
A.2014B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一套共7冊(cè)的書計(jì)劃每2年出一冊(cè),若各冊(cè)書的出版年份數(shù)之和為14035,則出齊這套書的年份是( 。
A.2005B.2007C.2009D.2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2sinωx(ω>0)在[-$\frac{π}{6}$,0]上的最小值為$-\sqrt{3}$,當(dāng)把f(x)的圖象上所有的點(diǎn)向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,得到的函數(shù)g(x)的圖象關(guān)于直線x=$\frac{7π}{12}$對(duì)稱.
(1)求函數(shù)g(x)的解析式;
(2)在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,若函數(shù)g(x)在y軸右側(cè)的第一個(gè)零點(diǎn)恰為A,a=5,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求sin1140°•cos750°-cos1485°•sin750°+sin780°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知a$>\frac{1}{2}$,?m∈[2a-1,1-a],?n∈(a,a+2)使得mn=4,則實(shí)數(shù)a的取值范圍是∅.

查看答案和解析>>

同步練習(xí)冊(cè)答案