已知變量x,y,滿足約束條件
y≤3
x+2y≥1
2x-y≤2
,則z=3x+y的最大值為( 。
A、3
B、12
C、
21
2
D、10
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合,即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=3x+y得y=-3x+z,
平移直線y=-3x+z,由圖象可知當(dāng)直線y=-3x+z,經(jīng)過點A時,
直線的截距最大,此時z最大.
y=3
2x-y=2
,解得
x=
5
2
y=3
,
即A(
5
2
,3),此時zmax=3×
5
2
+3=
21
2
,
故選:C.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x+3,x<1
-x+6,x≥1
的最大值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A、
2
3
3
B、
2
C、
4
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
p
=(sinA,cosA),
q
=(
3
cosA,-cosA)
(其中
q
0
)

(1)若0<A<
π
2
,方程
p
q
= t-
1
2
(t∈R)有且僅有一解,求t的取值范圍;
(2)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別是a,b,c,且a=
3
2
,若
p
q
,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,點(an,Sn)在y=
1
6
-
1
3
x的圖象上(n∈N*),
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若c1=0,且對任意正整數(shù)n都有cn+1-cn=log
1
2
an
,求證:對任意正整數(shù)n≥2,總有
1
3
1
c2
+
1
c3
+
1
c4
+…+
1
cn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-
3x
的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l⊥平面α,直線m?平面β,有下列四個命題:
①若α∥β,則l⊥m;
②若α⊥β,則l∥m;
③若l∥m,則α⊥β;
④若l⊥m,則α∥β.
以上命題中,正確命題的序號是(  )
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線y=kx(k>0)與函數(shù)y=x2的圖象交于點O,P,過P作PA⊥x軸于A.在△OAP中任取一點,則該點落在陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的周長為4,則該扇形的面積的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案