精英家教網 > 高中數學 > 題目詳情
3.已知雙曲線T:$\frac{{x}^{2}}{4}$-y2=1,過點B(-2,0)的直線交雙曲線T于點A(點A不為雙曲線頂點),若AB中點Q在直線y=x上,點P為雙曲線T上異于A,B的任意一點且不為雙曲線的頂點,直線AP,BP分別交直線y=x于M,N兩點,則$\overrightarrow{OM}$•$\overrightarrow{ON}$的值為( 。
A.-$\frac{8}{3}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.-8

分析 求出A的坐標,設點P(x0,y0)為曲線上任一點,得到直線AP的方程,直線BP的方程,可得M,N的坐標,由此即可得出結論.

解答 解:∵AB中點Q在直線y=x上,B(-2,0),
∴A($\frac{10}{3}$,$\frac{4}{3}$)
設點P(x0,y0)為曲線上任一點,
則直線AP的方程是y-$\frac{4}{3}$=$\frac{{y}_{0}-\frac{4}{3}}{{x}_{0}-\frac{10}{3}}$(x-$\frac{10}{3}$),
與直線y=x聯(lián)立得xM=yM=$\frac{10{y}_{0}-4{x}_{0}}{3{y}_{0}-3{x}_{0}+6}$,
同理得:直線BP的方程是y=$\frac{{y}_{0}}{{x}_{0}+2}$(x+2),
與直線y=x聯(lián)立得xN=yN=$\frac{2{y}_{0}}{{x}_{0}-{y}_{0}+2}$,
∵$\frac{{{x}_{0}}^{2}}{4}$-y02=1,
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=xMxN+yMyN=2×$\frac{10{y}_{0}-4{x}_{0}}{3{y}_{0}-3{x}_{0}+6}$×$\frac{2{y}_{0}}{{x}_{0}-{y}_{0}+2}$=-$\frac{8}{3}$.
故選A.

點評 本題考查直線方程的求法,考查向量的數量積,解題時要認真審題,注意中點坐標公式的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.近年來共享單車在我國主要城市發(fā)展迅速.目前市場上有多種類型的共享單車,有關部門對其中三種共享單車方式(M方式、Y方式、F方式)進行統(tǒng)計(統(tǒng)計對象年齡在15~55歲),相關數據如表1,表2所示.
三種共享單車方式人群年齡比例(表1)
     方式

年齡分組
M
方式
Y
方式
F
方式
[15,25)25%20%35%
[25,35)50%55%25%
[35,45)20%20%20%
[45,55]5%a%20%
不同性別選擇共享單車種類情況統(tǒng)計(表2)
性別
使用單車
種類數(種)
120%50%
235%40%
345%10%
(Ⅰ)根據表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計對象中隨機選取男女各一人,試估計男性使用共享單車種類數大于女性使用共享單車種類數的概率;
(Ⅲ)現有一個年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結論是否正確?(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知函數f(x)=2$\sqrt{3}$tan($\frac{x}{2}$+$\frac{π}{4}$)cos2($\frac{x}{2}$+$\frac{π}{4}$)-sin(x+π).
(Ⅰ)求f(x)的定義域和最小正周期;
(Ⅱ)若將f(x)的圖象向右平移$\frac{π}{6}$個單位,得到函數g(x)的圖象,求函數g(x)在區(qū)間[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知△ABC內角A,B,C的對邊分別是a,b,c,若cosB=$\frac{1}{4}$,b=2,sinC=2sinA,則△ABC的面積為( 。
A.$\sqrt{15}$B.$\frac{\sqrt{15}}{2}$C.$\frac{\sqrt{15}}{6}$D.$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知集合A={x|x2-x-2>0},B={x|x>1},則A∪B=( 。
A.{x|x>1}B.{x|x≤-1}C.{x|x>1或x<-1}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.圖中,能表示函數y=f(x)的圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,設ABCD和ABEF均為平行四邊形,他們不在同一平面內,M,N分別為對角線AC,BF上的點,且AM:AC=FN:BF.
求證:MN∥平面BEC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.寫出與下列各角終邊相同的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來:
(1)60°;
(2)-21°.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.設數列{an}前n項和Sn,且,令Sn=2an-2bn=log2an
(I)試求數列{an}的通項公式;
(Ⅱ)設${c_n}=\frac{b_n}{a_n}$,求證數列{cn}的前n項和Tn<2.

查看答案和解析>>

同步練習冊答案