分析 由f(x)=ax+lnx求導(dǎo),再由f(x)有極值知f′(x)=0解,且在兩側(cè)導(dǎo)函數(shù)正負(fù)相異求解.f(x)的極大值為f(-$\frac{1}{a}$)=-1+ln(-$\frac{1}{a}$),再求得端點(diǎn)值f(1)=a,f(e)=ae+1,比較后取最小值和最大值,從而求得值域.
解答 解:(1)由f(x)=ax+lnx求導(dǎo)可得:f′(x)=a+$\frac{1}{x}$.
令f′(x)=a+$\frac{1}{x}$=0,可得a=-$\frac{1}{x}$
∵x∈(1,e),∴-$\frac{1}{x}$∈(-1,-$\frac{1}{e}$)∴a∈(-1,-$\frac{1}{e}$)
又因?yàn)閤∈(1,e),列表如下:
x | $(1,-\frac{1}{a})$ | $-\frac{1}{a}$ | $(-\frac{1}{a},e)$ |
f′(x) | + | 0 | - |
f(x) | 增函數(shù) | 極大值 | 減函數(shù) |
點(diǎn)評(píng) 本題主要考查用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性,極值,最值等問題,以及集合思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{2}$,1) | B. | [$\frac{\sqrt{2}}{2}$,1) | C. | [$\frac{\sqrt{3}}{2}$,1) | D. | (1,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5}{2}$,-1) | B. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | D. | (-$\frac{9}{4}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
空氣污染指數(shù) (單位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
監(jiān)測(cè)點(diǎn)個(gè)數(shù) | 15 | 40 | y | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com