8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)和圓O:x2+y2=b2,若C上存在點M,過點M引圓O的兩條切線,切點分別為E,F(xiàn),使得△MEF為正三角形,則橢圓C的離心率的取值范圍是( 。
A.[$\frac{1}{2}$,1)B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{2}$,1)D.(1,$\frac{3}{2}$]

分析 如圖所示,連接OE,OF,OM,由于△MEF為正三角形,可得∠OME=30°,OM=2b≤a,再利用離心率計算公式即可得出.

解答 解:如圖所示,連接OE,OF,OM,
∵△MEF為正三角形,
∴∠OME=30°,
∴OM=2b,
則2b≤a,
∴$\frac{a}≤\frac{1}{2}$,
∴橢圓C的離心率e=$\sqrt{1-(\frac{a})^{2}}$$≥\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$.
又e<1.
∴橢圓C的離心率的取值范圍是$[\frac{\sqrt{3}}{2},1)$.
故選:C.

點評 本題考查了橢圓與圓的標準方程及其性質、直角三角形的邊角關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.求函數(shù)y=$\sqrt{x-1}$-$\sqrt{2-x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知四棱錐P-ABCD中,底面ABCD是菱形,M是PC的中點,∠PDC=90°,∠PDA=90°,∠DAB=60°
(Ⅰ)證明:PA∥平面BDM;
(Ⅱ)若PD=2,且二面角C-DM-B的平面角的正切值等于$\sqrt{6}$,求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,三棱柱ABC-A1B1C1中,BCC1B1是邊長為1的正方形,A在平面BCC1B1的射影恰為BB1的中點D,E為B1C1的中點,AD=$\frac{1}{2}$
(Ⅰ)求證:BE⊥AC;
(Ⅱ)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S. 
①當0<CQ<$\frac{1}{2}$時,S為四邊形
②截面在底面上投影面積恒為定值$\frac{3}{4}$
③存在某個位置,使得截面S與平面A1BD垂直
④當CQ=$\frac{3}{4}$時,S與C1D1的交點R滿足C1R=$\frac{1}{3}$
其中正確命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的左、右焦點,過F2的直線交橢圓于P,Q兩點,若∠F1PQ=60°,|PF1|=|PQ|,則橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,點E為AB上一點,且$\frac{AE}{AB}$=k,點F為PD中點.
(Ⅰ)若k=$\frac{1}{2}$,求證:直線AF∥平面PEC;
(Ⅱ)是否存在一個常數(shù)k,使得平面PED⊥平面PAB,若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.解關于x的不等式:|x-1|+|x+2|≥4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設函數(shù)f(x)=ax+lnx,x∈(1,e),若f(x)有極值,則函數(shù)f(x)的值域為(a,-1+ln(-$\frac{1}{a}$)].

查看答案和解析>>

同步練習冊答案