分析 利用已知條件,找出概率寫出結果即可.
解答 解:由:若銳角θ滿足sinθ+cosθ=$\sqrt{2}$,則sinθcosθ=$\frac{1}{2}$
若銳角θ滿足sin3θ+cos3θ=$\frac{{\sqrt{2}}}{2}$,則sinθcosθ=$\frac{1}{2}$
若銳角θ滿足sin5θ+cos5θ=$\frac{{\sqrt{2}}}{4}$,則sinθcosθ=$\frac{1}{2}$
可以看出,等式左側是正弦函數(shù)與余弦函數(shù)的奇數(shù)次冪的和,右側是$\sqrt{2}$依次減半,推出結果是正弦函數(shù)與余弦函數(shù)乘積的結果為$\frac{1}{2}$.
可得一般性結論為:
若銳角θ滿足${sin^{2n+1}}θ+{cos^{2n+1}}θ=2{(\frac{{\sqrt{2}}}{2})^{2n+1}}(n∈N)$,則$sinθcosθ=\frac{1}{2}$或
若銳角θ滿足${sin^{2n+1}}θ+{cos^{2n+1}}θ=\frac{{\sqrt{2}}}{2^n}(n∈N)$,則$sinθcosθ=\frac{1}{2}$.
故答案為:若銳角θ滿足${sin^{2n+1}}θ+{cos^{2n+1}}θ=2{(\frac{{\sqrt{2}}}{2})^{2n+1}}(n∈N)$,則$sinθcosθ=\frac{1}{2}$或
若銳角θ滿足${sin^{2n+1}}θ+{cos^{2n+1}}θ=\frac{{\sqrt{2}}}{2^n}(n∈N)$,則$sinθcosθ=\frac{1}{2}$.
點評 本題考查歸納推理的應用,找出規(guī)律是解題 關鍵,考查觀察能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1] | B. | [2,+∞) | C. | (-∞,2] | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com