已知數(shù)列{an}中,a1=2,其前n項(xiàng)和Sn滿足Sn+1-Sn=2n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an以及前n項(xiàng)和Sn;
(2)令bn=2log2an+1,求數(shù)列的前n項(xiàng)和Tn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列2008,2009,1,-2008,-2009,…這個(gè)數(shù)列的特點(diǎn)是從第二項(xiàng)起,每一項(xiàng)都等于它的前后兩項(xiàng)之和,則這個(gè)數(shù)列的前2014項(xiàng)之和S2014等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的首項(xiàng)a1=1,且滿足an+1= (n∈N*).
(1)設(shè)bn=,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=bn·2n,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(1)若{an}是等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
(2)若a1=1,q≠0,且對(duì)所有正整數(shù)n,有Sn=.判斷{an}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(an+2,Sn+1)在直線y=4x-5上,其中n∈N*.令bn=an+1-2an,且a1=1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若f(x)=b1x+b2x2+b3x3+…+bnxn,求f ′(1)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知{an}為等差數(shù)列,{bn}為正項(xiàng)等比數(shù)列,公式q≠1,若a1=b1,a11=b11,則( )
A.a6=b6 B.a6>b6
C.a6<b6 D.以上都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*),把數(shù)列{an}的各項(xiàng)排列成如圖所示的三角形數(shù)陣:
2
22 23
24 25 26
27 28 29 210
……
記M(s,t)表示該數(shù)陣中第s行的第t個(gè)數(shù),則M(11,2)對(duì)應(yīng)的數(shù)是________(用2n的形式表示,n∈N).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在R上定義運(yùn)算:=ad-bc.若不等式≥1對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的最大值為( )
A.- B.-
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com