分析 根據(jù)兩角和差的正弦公式和同角的三角函數(shù)的關(guān)系即可求出.
解答 解:∵sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$)=$\frac{2\sqrt{10}}{5}$,
∴sin(θ+$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,
∴cos(θ+$\frac{π}{4}$)=$\sqrt{1-si{n}^{2}(θ+\frac{π}{4})}$=±$\frac{\sqrt{5}}{5}$,
∴tan(θ+$\frac{π}{4}$)=$\frac{sin(θ+\frac{π}{4})}{cos(θ+\frac{π}{4})}$=±2,
故答案為:±2.
點評 此題考查了同角三角函數(shù)基本關(guān)系的運用和兩角和的正弦公式,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0°<A≤60° | B. | 0°<A<30° | C. | 0°<A<90° | D. | 30°<A<60° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com