9.已知sinθ+cosθ=$\frac{2\sqrt{10}}{5}$,則tan(θ+$\frac{π}{4}$)=±2.

分析 根據(jù)兩角和差的正弦公式和同角的三角函數(shù)的關(guān)系即可求出.

解答 解:∵sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$)=$\frac{2\sqrt{10}}{5}$,
∴sin(θ+$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,
∴cos(θ+$\frac{π}{4}$)=$\sqrt{1-si{n}^{2}(θ+\frac{π}{4})}$=±$\frac{\sqrt{5}}{5}$,
∴tan(θ+$\frac{π}{4}$)=$\frac{sin(θ+\frac{π}{4})}{cos(θ+\frac{π}{4})}$=±2,
故答案為:±2.

點評 此題考查了同角三角函數(shù)基本關(guān)系的運用和兩角和的正弦公式,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.過點P(-1,0)作曲線f(x)=ex的切線l.
(1)求切線l的方程;
(2)若函數(shù)g(x)=f(x)-ax-1有唯一零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列命題
①在空間,過直線外一點,作這條直線的平行線只能有一條.
②既不平行,又不相交的兩條不同直線是異面直線
③兩兩互相平行的三條直線確定一個平面
④不可能在同一平面的兩線是異面直線
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將3名支教教師安排到2所學(xué)校任教,每校至多2人的分配方法總數(shù)為a,則二項式($\frac{3x}{a}$-$\frac{1}{\root{3}{x}}$)5展開式中含x項的系數(shù)為-$\frac{5}{4}$(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=$\frac{1}{{3}^{x}+1}$+t是奇函數(shù),則f(-1)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算$\frac{3x}{{x}^{2}-2x-3}$-$\frac{1}{x+1}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中,角A,B,C的對邊分別為a,b,c,且asinB+bcosA=0.
(1)求角A的大小;
(2)若$a=2\sqrt{5},b=2$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=ex
(1)確定方程f(x)=$\frac{x+1}{x-1}$實數(shù)根的個數(shù);
(2)我們把與兩條曲線都相切的直線叫作這兩條曲線的公切線,試確定曲線y=f(x),y=g(x)公切線的條數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,a=2$\sqrt{3}$m,b=4m(m>0),如果三角形有解,則A的取值范圍是( 。
A.0°<A≤60°B.0°<A<30°C.0°<A<90°D.30°<A<60°

查看答案和解析>>

同步練習(xí)冊答案