從1,2,3,4中取任意兩個不同的數(shù),則取出的2個數(shù)之差的絕對值為3的概率是(  )
A、
1
3
B、
2
3
C、
1
6
D、
1
2
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:從1,2,3,4中取任意兩個不同的數(shù),基本事件總數(shù),取出的2個數(shù)之差的絕對值為3包含的基本事件的個數(shù),由此利用等可能事件概率計算公式能求出取出的2個數(shù)之差的絕對值為3的概率.
解答: 解:從1,2,3,4中取任意兩個不同的數(shù),
基本事件總數(shù)n=
C
2
4
=6,
取出的2個數(shù)之差的絕對值為3包含的基本事件的個數(shù)m=1,
∴取出的2個數(shù)之差的絕對值為3的概率P=
m
n
=
1
6

故選:C.
點評:本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過以AB為直徑的圓上C點作直線交圓于E點,交AB延長線于D點,過C點作圓的切線交AD于F點,交AE延長線于G點,且GA=GF.
(Ⅰ)求證CA=CD;
(Ⅱ)設(shè)H為AD的中點,求證BH•BA=BF•BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)復(fù)數(shù)z滿足(2-i)z=3+i則z=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)Sn是正項數(shù)列{an}的前n項和且n∈N*,Sn=
1
4
an2+
1
2
an-
3
4
,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
36
-
y2
9
=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=2,an+1an=an-1,則a2013的值為( 。
A、-1
B、
1
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校為了了解新的一輪數(shù)改墨水有效性的“認可度”,在全校師生(可認為很多人)進行了“認可度”的問卷調(diào)查,現(xiàn)隨機抽查50名師生,對他們的“認可度”的問卷調(diào)查,現(xiàn)隨機抽查50名師生,對他們的“認可度”統(tǒng)計分析得如圖:
(1)求這50名師生的“認可度”的平均值(每一區(qū)間取中點值計算);
(2)求從這50名師生中任取一人的“認可度”的分數(shù)在60(含)分以上的概率;
(3)以這50名師生的“認可度”來估計全校師生總體“認可度”的評價,若從中隨機抽取4人的“認可度”,用ξ表示抽到的“認可度”分數(shù)在60(含)分以上的人數(shù),求ξ的分布列與整數(shù)期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
x+2y-3≤0
x+3y-3≥0
y-1≤0
,則目標函數(shù)z=2x+y的最小值是( 。
A、6
B、3
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知c=
3
,C=
π
3

(Ⅰ)若2sin2A+sin(A-B)=sinC,求A;
(Ⅱ)求△ABC周長的取值范圍.

查看答案和解析>>

同步練習冊答案