從1,2,3,4中取任意兩個(gè)不同的數(shù),則取出的2個(gè)數(shù)之差的絕對值為3的概率是( 。
A、
1
3
B、
2
3
C、
1
6
D、
1
2
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:從1,2,3,4中取任意兩個(gè)不同的數(shù),基本事件總數(shù),取出的2個(gè)數(shù)之差的絕對值為3包含的基本事件的個(gè)數(shù),由此利用等可能事件概率計(jì)算公式能求出取出的2個(gè)數(shù)之差的絕對值為3的概率.
解答: 解:從1,2,3,4中取任意兩個(gè)不同的數(shù),
基本事件總數(shù)n=
C
2
4
=6,
取出的2個(gè)數(shù)之差的絕對值為3包含的基本事件的個(gè)數(shù)m=1,
∴取出的2個(gè)數(shù)之差的絕對值為3的概率P=
m
n
=
1
6

故選:C.
點(diǎn)評:本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過以AB為直徑的圓上C點(diǎn)作直線交圓于E點(diǎn),交AB延長線于D點(diǎn),過C點(diǎn)作圓的切線交AD于F點(diǎn),交AE延長線于G點(diǎn),且GA=GF.
(Ⅰ)求證CA=CD;
(Ⅱ)設(shè)H為AD的中點(diǎn),求證BH•BA=BF•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足(2-i)z=3+i則z=( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和且n∈N*,Sn=
1
4
an2+
1
2
an-
3
4
,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
36
-
y2
9
=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=2,an+1an=an-1,則a2013的值為( 。
A、-1
B、
1
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了了解新的一輪數(shù)改墨水有效性的“認(rèn)可度”,在全校師生(可認(rèn)為很多人)進(jìn)行了“認(rèn)可度”的問卷調(diào)查,現(xiàn)隨機(jī)抽查50名師生,對他們的“認(rèn)可度”的問卷調(diào)查,現(xiàn)隨機(jī)抽查50名師生,對他們的“認(rèn)可度”統(tǒng)計(jì)分析得如圖:
(1)求這50名師生的“認(rèn)可度”的平均值(每一區(qū)間取中點(diǎn)值計(jì)算);
(2)求從這50名師生中任取一人的“認(rèn)可度”的分?jǐn)?shù)在60(含)分以上的概率;
(3)以這50名師生的“認(rèn)可度”來估計(jì)全校師生總體“認(rèn)可度”的評價(jià),若從中隨機(jī)抽取4人的“認(rèn)可度”,用ξ表示抽到的“認(rèn)可度”分?jǐn)?shù)在60(含)分以上的人數(shù),求ξ的分布列與整數(shù)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+2y-3≤0
x+3y-3≥0
y-1≤0
,則目標(biāo)函數(shù)z=2x+y的最小值是(  )
A、6
B、3
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知c=
3
,C=
π
3

(Ⅰ)若2sin2A+sin(A-B)=sinC,求A;
(Ⅱ)求△ABC周長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案