【題目】已知函數(shù), .

(1)若曲線的一條切線經(jīng)過點,求這條切線的方程.

(2)若關(guān)于的方程有兩個不相等的實數(shù)根x1,x2。

求實數(shù)a的取值范圍;

證明: .

【答案】1.2見解析

【解析】試題分析:(1)先設(shè)切線點斜式方程,再與二次函數(shù)聯(lián)立方程組,利用判別式為零得斜率(2)先求函數(shù)導(dǎo)數(shù),分類討論導(dǎo)函數(shù)零點,單調(diào)函數(shù)至多一個零點,所以函數(shù)不單調(diào),再依次討論對應(yīng)單調(diào)區(qū)間上有零點滿足的條件構(gòu)造函數(shù), ,利用導(dǎo)數(shù)易得函數(shù)單調(diào)遞增,即得結(jié)論

試題解析:解:(1)解法一 設(shè)經(jīng)過點的切線與曲線相切于點

,

所以該切線方程為

因為該切線經(jīng)過,

所以,解得

所以切線方程為.

解法二 由題意得曲線的切線的斜率一定存在,

設(shè)所求的切線方程為

,得

因為切線與拋物線相切,

所以,解得

所以所求的切線方程為.

(2)①由,得.

設(shè)

,

由題意得函數(shù)恰好有兩個零點.

i)當(dāng),則,

只有一個零點1

ii)當(dāng)時,由,由,

上為減函數(shù),在上為增函數(shù),

所以上有唯一零點,且該零點在上.

,

所以上有唯一零點,且該零點在上,

所以恰好有兩個零點.

iii)當(dāng)時,由,

, ,

所以上至多有一個零點.

,則,

當(dāng)時, 上單調(diào)遞減

,所以上至多有一個零點.

當(dāng), 上單調(diào)遞增,在上為減函數(shù),

所以h(x)在上無零點.

,則,

又當(dāng) ,

所以不存在零點.

上無零點

故當(dāng)時, ;當(dāng)時,

因此上單調(diào)遞增,在上單調(diào)遞減.

所以無零點,在至多有一個零點

綜上, 的取值范圍為

不妨設(shè),

, , 單調(diào)遞減,

所以等價于,即

由于

,

所以

設(shè)

當(dāng)時, 所以.

,故當(dāng)時,

從而,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016雙節(jié)期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速分成六段: , , , 后得到如圖的頻率分布直方圖.

I)某調(diào)查公司在采樣中,用到的是什么抽樣方法?

II)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計值;

(III)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:

;②上;③平面;④直線在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認(rèn)為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)監(jiān)部門從某超市銷售的甲、乙兩種食用油中分別各隨機抽取100桶檢測某項質(zhì)量指標(biāo),由檢測結(jié)果得到如下的頻率分布直方圖:

(Ⅰ)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,,試比較,的大。ㄖ灰髮懗龃鸢福;

(Ⅱ)估計在甲、乙兩種食用油中隨機抽取1捅,恰有一桶的質(zhì)量指標(biāo)大于20;

(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù)近似為樣本方差,設(shè)表示從乙種食用油中隨機抽取10桶,其質(zhì)量指標(biāo)值位于(14.55,38.45)的桶數(shù),求的數(shù)學(xué)期望.

注:①同一組數(shù)據(jù)用該區(qū)問的中點值作代表,計算得

②若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

(Ⅰ)求所取3張卡片上的數(shù)字完全相同的概率;

表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望

(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年7月24日,長春長生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,因此,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測,以保證疫苗使用的安全和有效.某生物制品研究所將某一型號疫苗用在動物小白鼠身上進(jìn)行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如表:現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為

未感染病毒

感染病毒

總計

未注射疫苗

20

x

A

注射疫苗

30

y

B

總計

50

50

100

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;

(2)能否有99.9%把握認(rèn)為注射此種疫苗有效?

附:nabcd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, , , , 中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;

(2)若,過的平面交于點,且的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中,

(1)根據(jù)散點圖判斷: 哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應(yīng)該印刷多少冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于正整數(shù)集合,),如果去掉其中任意一個元素)之后,剩余的所有元素組成的集合都能分為兩個交集為空集的集合,且這兩個集合的所有元素之和相等,就稱集合和諧集”.

(1)判斷集合是否為和諧集,并說明理由;

(2)求證:集合和諧集;

(3)求證:若集合和諧集,則集合中元素個數(shù)為奇數(shù).

查看答案和解析>>

同步練習(xí)冊答案