分析 (1)當(dāng)x∈[-2,2]時(shí),f(x)≥2恒成立,即x2+ax+1-a≥0在[-2,2]上恒成立,分兩種情況:若根的判別式小于等于0時(shí)滿足題意;根的判別式大于0時(shí),可得f(2)與f(-2)都大于等于0,且對稱軸大于等于2或小于等于-2,求出a的范圍即可確定出M;
(2)求出M與整數(shù)集的交集確定出E,求出E子集個(gè)數(shù)即可.
解答 解:(1)∵函數(shù)f(x)=x2+ax+3-a,當(dāng)x∈[-2,2]時(shí),f(x)≥2恒成立,
∴x2+ax+1-a≥0在[-2,2]上恒成立,
∵△=a2-4(1-a)≤0,
∴-2-2$\sqrt{2}$≤a≤-2+2$\sqrt{2}$,
或$\left\{\begin{array}{l}{△={a}^{2}-4(1-a)>0}\\{f(2)≥0}\\{f(-2)≥0}\\{-\frac{a}{2}≥2或-\frac{a}{2}≤-2}\end{array}\right.$,
解得:-5≤a<-2$\sqrt{2}$-2,
則M={a|-5≤a≤2$\sqrt{2}$-2};
(2)由(1)得:M={a|-5≤a≤2$\sqrt{2}$-2},
∴E={a|a∈M}∩Z(Z為整數(shù)集)={-5,-4,-3,-2,-1,0},
則集合E的子集個(gè)數(shù)為26=64.
點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {5,6} | B. | {4,5,6,7} | C. | {x|4<x<7} | D. | {x|3<x<8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com