20.已知{an}為等比數(shù)列.
(1)若an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
(2)若an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.

分析 (1)由已知式子和等比數(shù)列的性質(zhì)可得a32+2a3a5+a52=25即(a3+a52=25,解方程可得;
(2)由題意和等比數(shù)列的性質(zhì)以及對數(shù)的運算可得原式=log3(a5a65,代值計算可得.

解答 解:(1)∵{an}為等比數(shù)列,且an>0,a2a4+2a3a5+a4a6=25,
∴a32+2a3a5+a52=25,故(a3+a52=25,解得a3+a5=5;
(2)∵an>0且a5a6=9,
∴l(xiāng)og3a1+log3a2+…+log3a10
=log3a1a2…a10=log3(a5a65=log395=log3310=10.

點評 本題考查等比數(shù)列的通項公式和性質(zhì),涉及對數(shù)的運算性質(zhì),屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知集合A={x|y=lg(a-x)},B={x|1<x<2},且(∁RB)∪A=R,則實數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.“sinα=0”是“cosα=1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y=10}\\{x≥0}\\{y≥0}\end{array}\right.$,則目標函數(shù)z=3x+3y的最大值為30,該線性規(guī)劃有無數(shù)個最優(yōu)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知銳角三角形的邊長分別為2,4,x,則x的取值范圍是(  )
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,$\sqrt{13}$)C.(1,2$\sqrt{5}$)D.(2$\sqrt{3}$,2$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=asin(2x+φ)+cos(2x+φ),(a>0,|φ|<$\frac{π}{2}$)的最大值為2,且f(-x)=f(x),則a,φ的取值分別為(  )
A.a=1,φ=$\frac{π}{3}$B.a=1,φ=$\frac{π}{6}$C.a=$\sqrt{3}$,φ=$\frac{π}{3}$D.a=$\sqrt{3}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.a(chǎn)∈R,設(shè)函數(shù)f(x)=(-x2+ax)e-x,x∈R.
(1)當a=-2時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若x∈(-1,1)內(nèi)單調(diào)遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了解今年某校高三畢業(yè)班準備報考飛行員學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報考飛行員的總?cè)藬?shù);
(Ⅱ)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的同學中(人數(shù)很多)任選三人,設(shè)X表示體重超過60公斤的學生人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別是F1,F(xiàn)2,P為橢圓C上的點,在△PF1F2中,點Q滿足$\overrightarrow{{F}_{1}P}$=4$\overrightarrow{{F}_{1}Q}$,∠F1PF2=∠QF2F1,則橢圓C的離心率e的取值范圍是(  )
A.0<e<$\frac{1}{5}$B.$\frac{1}{5}$<e<$\frac{1}{3}$C.$\frac{1}{3}$<e<1D.0<e<$\frac{1}{5}$或$\frac{1}{3}$<e<1

查看答案和解析>>

同步練習冊答案