A. | a=1,φ=$\frac{π}{3}$ | B. | a=1,φ=$\frac{π}{6}$ | C. | a=$\sqrt{3}$,φ=$\frac{π}{3}$ | D. | a=$\sqrt{3}$,φ=$\frac{π}{6}$ |
分析 由條件利用輔助角公式化簡函數(shù)的解析式,再利用三角函數(shù)的最值求得a,利用三角函數(shù)的奇偶性、誘導(dǎo)公式求得φ的值,從而得出結(jié)論.
解答 解:∵函數(shù)f(x)=asin(2x+φ)+cos(2x+φ)=$\sqrt{{a}^{2}+1}$sin(2x+φ+θ) (a>0,|φ|<$\frac{π}{2}$)的最大值為2,
其中,cosθ=$\frac{a}{\sqrt{{a}^{2}+1}}$,sinθ=$\frac{1}{\sqrt{{a}^{2}+1}}$,故$\sqrt{{a}^{2}+1}$=2,故a=$\sqrt{3}$.
可得 cosθ=$\frac{\sqrt{3}}{2}$,sinθ=$\frac{1}{2}$,故可取θ=$\frac{π}{6}$,f(x)=$\sqrt{3}$sin(2x+φ+$\frac{π}{6}$).
再由f(-x)=f(x),可得f(x)為偶函數(shù),故φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,∴φ=$\frac{π}{3}$.
故選:C.
點(diǎn)評 本題主要考查輔助角公式,三角函數(shù)的奇偶性,誘導(dǎo)公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com