分析 (1)$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$可知M是AB的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式求得x1和x2的關(guān)系,代入函數(shù)解析式即可求得m的值;
(2)由(1)可知,f(x1)+f(x2)=y1+y2=1,采用倒序相加法,即可求求得Sn;
(3)由題意可知當(dāng)n≥2時(shí),${a_n}=\frac{n-1}{2}$,求得數(shù)列{an}的前n項(xiàng)和Tn,由Tn>λ(Sn+1+1),采用分離變量即可求得λ的表達(dá)式,即可求得λ的取值范圍.
解答 解:(1)∵$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,
∴M是AB的中點(diǎn),設(shè)A(x1,y1),B(x2,y2),則
由$\frac{1}{2}({x_1}+{x_2})=\frac{1}{2}$,得x1+x2=1,則x1=1-x2,x2=1-x1,
而$m=\frac{1}{2}({y_1}+{y_2})=\frac{1}{2}[f({x_1})+f({x_2})]$=$\frac{1}{2}(\frac{1}{2}+{log_2}\frac{x_1}{{1-{x_1}}}+\frac{1}{2}+{log_2}\frac{x_2}{{1-{x_2}}})$,
=$\frac{1}{2}(1+{log_2}\frac{x_1}{x_2}+{log_2}\frac{x_2}{x_1})$,
=$\frac{1}{2}(1+{log_2}\frac{x_1}{x_2}•\frac{x_2}{x_1})=\frac{1}{2}$
∴$m=\frac{1}{2}$.
(2)由(1)知:x1+x2=1,f(x1)+f(x2)=y1+y2=1,
${S_n}=f(\frac{1}{n})+f(\frac{2}{n})+…+f(\frac{n-1}{n})$,
${S_n}=f(\frac{n-1}{n})+f(\frac{n-2}{n})+…+f(\frac{1}{n})$,
兩式相加,得:$2{S_n}=[f(\frac{1}{n})+f(\frac{n-1}{n})]+[f(\frac{2}{n})+f(\frac{n-2}{n})]+…+[f(\frac{n-1}{n})+f(\frac{1}{n})]$=$\underbrace{1+1+…+1}_{n-1}=n-1$,
∴${S_n}=\frac{n-1}{2}$(n≥2,n∈N).
(3)當(dāng)n≥2時(shí),${a_n}=\frac{n-1}{2}$,${T_n}={a_1}+{a_2}+{a_3}+…+{a_n}=\frac{1}{2}+\frac{1}{4}n(n-1)=\frac{{{n^2}-n+2}}{4}$,
由Tn>λ(Sn+1+1),得$\frac{{{n^2}-n+2}}{4}>λ\frac{n+2}{2}$,
∴$λ<\frac{{{n^2}-n+2}}{2(n+2)}$對(duì)任意n≥2,n∈N*都成立,
$\frac{{{n^2}-n+2}}{2(n+2)}=\frac{1}{2}[(n+2)+\frac{8}{n+2}-5]≥\frac{1}{2}(4+\frac{8}{4}-5)=\frac{1}{2}$,
當(dāng)且僅當(dāng)n=2時(shí)等號(hào)成立,
∴$λ<\frac{1}{2}$.
當(dāng)n=1時(shí),λ<$\frac{1}{3}$,
綜上可知$λ<\frac{1}{2}$.
故λ的取值范圍是(-∞,$\frac{1}{2}$).
點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和,涉及了向量的中點(diǎn)坐標(biāo)公式、采用倒序相加法求前n項(xiàng)和及不等式的性質(zhì),考查分析問(wèn)題及解決問(wèn)題得能力,綜合能力強(qiáng),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | 3 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2004 | B. | 2006 | C. | 4008 | D. | 6011 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com