3.已知數(shù)列{an}的首項(xiàng)a1=3,an+1=3nan,則通項(xiàng)公式an=${3}^{\frac{(n-1)n}{2}}$.

分析 a1=3,an+1=3nan,可得n≥2時(shí),$\frac{{a}_{n}}{{a}_{n-1}}$=3n-1,利用“累乘求積”方法即可得出.

解答 解:∵a1=3,an+1=3nan,
∴n≥2時(shí),$\frac{{a}_{n}}{{a}_{n-1}}$=3n-1,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$•$\frac{{a}_{2}}{{a}_{1}}$•a1
=3n-1×3n-2×…×32×3×1
=${3}^{\frac{(n-1)n}{2}}$,
n=1時(shí)也成立.
∴an=${3}^{\frac{(n-1)n}{2}}$,
故答案為:${3}^{\frac{(n-1)n}{2}}$.

點(diǎn)評(píng) 本題考查了“累乘求積”方法、等差數(shù)列的求和公式、指數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)f(x)=ax3+bx2+cx+d有兩個(gè)極值點(diǎn)x1,x2,若點(diǎn)P(x1,f(x1))為原點(diǎn),點(diǎn)Q(x2,f(x2))在圓C:(x-2)2+(y-3)2=1上運(yùn)動(dòng)時(shí),則函數(shù)f(x)圖象的切線斜率的最大值為3+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|x-$\frac{1}{x}$|(x>0).
(1)若a≠b且f(a)=f(b),求證:ab=1;
(2)當(dāng)a<b,是否存在區(qū)間[a,b],使得f(x)的定義域和值域都是[a,b],若存在求出a,b的值,不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如表數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(件)908483807568
(Ⅰ)求回歸直線方程$\widehat{y}$=$\widehat$x+$\hat{a}$,其中${\;}_^{∧}$=-20,${\;}_{a}^{∧}$=y-${\;}_^{∧}$$\overline{x}$;
(Ⅱ)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(Ⅰ)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知(x1,y1),(x2,y2)是方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$的兩組解,求(x1-x22+(y1-y22的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)-$\frac{2}{{2}^{x}+1}$,若f(a)=1,則f(-a)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知AC是以AB為直徑的⊙O的一條弦,點(diǎn)D是劣弧$\widehat{AC}$上的一點(diǎn),過(guò)點(diǎn)D作DH⊥AB于H,交AC于E,延長(zhǎng)線交⊙O于F.
(Ⅰ)求證:AD2=AE•AC;
(Ⅱ)延長(zhǎng)ED到P,使PE=PC,求證:PE2=PD•PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=kx2-lnx(k∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)證明:$\frac{ln2}{{2}^{4}}+\frac{ln3}{{3}^{4}}+\frac{ln4}{{4}^{4}}$+…+$\frac{lnn}{{n}^{4}}$<$\frac{1}{2e}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)復(fù)數(shù)z滿足(1+i)z=|$\sqrt{3}$+i|,其中i為虛數(shù)單位,則在復(fù)平面內(nèi),z對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A.($\sqrt{2}$,-$\sqrt{2}$)B.(1,-1)C.(1,-i)D.(2,-2i)

查看答案和解析>>

同步練習(xí)冊(cè)答案