13.設(shè)函數(shù)f(x)=ax3+bx2+cx+d有兩個(gè)極值點(diǎn)x1,x2,若點(diǎn)P(x1,f(x1))為原點(diǎn),點(diǎn)Q(x2,f(x2))在圓C:(x-2)2+(y-3)2=1上運(yùn)動(dòng)時(shí),則函數(shù)f(x)圖象的切線(xiàn)斜率的最大值為3+$\sqrt{3}$.

分析 先求出c=0,d=0,得到x2=-$\frac{2b}{3a}$>0,f(x2)=$\frac{{4b}^{3}}{2{7a}^{2}}$>0,判斷出a<0,b>0,得到kmax=$\frac{3f{(x}_{2})}{{2x}_{2}}$,根據(jù)二次函數(shù)的性質(zhì)求出 $\frac{f{(x}_{2})}{{x}_{2}}$的最大值,從而求出k的最大值即可.

解答 解:f′(x)=3ax2+2bx+c,若點(diǎn)P(x1,f(x1))為坐標(biāo)原點(diǎn),
則f′(0)=0,f(0)=0,故c=0,d=0,
∴f′(x)=3ax2+2bx=0,解得:x2=-$\frac{2b}{3a}$,f(x2)=$\frac{{4b}^{3}}{2{7a}^{2}}$,
又Q(x2,f(x2))在圓C:(x-2)2+(y-3)2=1上,
∴x2>0,f(x2)>0,∴a<0,b>0,
∴kmax=-$\frac{^{2}}{3a}$=$\frac{3f{(x}_{2})}{{2x}_{2}}$,
而$\frac{f{(x}_{2})}{{x}_{2}}$表示⊙C上的點(diǎn)Q與原點(diǎn)連線(xiàn)的斜率,
由$\left\{\begin{array}{l}{y=kx}\\{{(x-2)}^{2}{+(y-3)}^{2}=1}\end{array}\right.$,
得:(1+k2)x2-(6k+4)x+12=0,
得:△=0,解得:k=$\frac{6±2\sqrt{3}}{3}$,
∴$\frac{f{(x}_{2})}{{x}_{2}}$的最大值是2+$\frac{2\sqrt{3}}{3}$,
∴kmax=3+$\sqrt{3}$,
故答案為:3+$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì)和直線(xiàn)與圓的關(guān)系,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各數(shù)中,純虛數(shù)的個(gè)數(shù)有( 。﹤(gè).
$2+\sqrt{7}$、$\frac{2}{7}i$、0i、5i+8,$i({1-\sqrt{3}})$、$\frac{1}{1+i}$.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定積分$\int_0^2$($\sqrt{1-{{(x-1)}^2}}}$-x)dx等于( 。
A.$\frac{π-2}{4}$B.$\frac{π}{2}$-4C.$\frac{π-1}{4}$D.$\frac{π-4}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.用5種不同的顏色給圖中四個(gè)區(qū)域涂色,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,不同的涂色方法有( 。
A.180B.240C.160D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=30,S10=110,則S15=( 。
A.140B.190C.240D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線(xiàn)C:y=$\frac{1}{2}$x2與直線(xiàn)l:y=kx-1(k為常數(shù))沒(méi)有公共點(diǎn),設(shè)點(diǎn)P為直線(xiàn)l上的動(dòng)點(diǎn),且P的橫坐標(biāo)為x0,Q(k,1)為定點(diǎn)
(1)求拋物線(xiàn)C的準(zhǔn)線(xiàn)方程;
(2)若點(diǎn)P與定點(diǎn)Q的連線(xiàn)交拋物線(xiàn)C于M,N兩點(diǎn),求證:|PM|•|ON|=|PN|•|QM|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知a,b為正實(shí)數(shù),則“$\frac{a}$>1”是“aea>beb(e=2.7182…)”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充分必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.號(hào)碼為1、2、3、4、5、6的六個(gè)大小相同的球,放入編號(hào)為1、2、3、4、5、6的六個(gè)盒子中,每個(gè)盒子只能放一個(gè)球.
(1)若1號(hào)球只能放在1號(hào)盒子中,6號(hào)球不能放在6號(hào)的盒子中,則不同的放法有多少種?
(2)若5、6號(hào)球只能放入號(hào)碼是相鄰數(shù)字的兩個(gè)盒子中且不與4號(hào)球相鄰,則不同的放法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}的首項(xiàng)a1=3,an+1=3nan,則通項(xiàng)公式an=${3}^{\frac{(n-1)n}{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案