20.下列命題中,正確的共有( 。
①因?yàn)橹本是無(wú)限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
②兩個(gè)平面有時(shí)只相交于一個(gè)公共點(diǎn);
③分別在兩個(gè)相交平面內(nèi)的兩條直線如果相交,則交點(diǎn)只可能在兩個(gè)平面的交線上;
④一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi).
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

分析 根據(jù)平面的基本性質(zhì)及其推論逐一判斷即可得解.

解答 解:對(duì)于①,因?yàn)槠矫嬉彩强梢詿o(wú)限延伸的,故錯(cuò)誤;
對(duì)于②,兩個(gè)平面只要有一個(gè)公共點(diǎn),就有一條通過(guò)該點(diǎn)的公共直線,故錯(cuò)誤;
對(duì)于③,交點(diǎn)分別含于兩條直線,也分別含于兩個(gè)平面,必然在交線上,故正確;
對(duì)于④,若一條直線過(guò)三角形的頂點(diǎn),則這條直線不一定在三角形所在的平面內(nèi),故錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 本題考查命題的真假判斷,考查平面的基本性質(zhì)及其推論的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若集合A={x|y=$\sqrt{x-1}$},B={y|y=$\sqrt{x-1}$},則(  )
A.A=BB.A∩B=∅C.A∩B=AD.A∪B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)y=a1-x-2(a>0且a≠1)恒過(guò)點(diǎn)P,若角α的終邊過(guò)點(diǎn)P,則α角的余弦值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知對(duì)任意實(shí)數(shù)x,不等式mx2-(3-m)x+1>0成立或不等式mx>0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則點(diǎn)C1到直線BD的距離為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知下列四個(gè)命題:
①函數(shù)f(x)=$\frac{1}{3}$x-lnx(x>0),則y=f(x)在區(qū)間($\frac{1}{e}$,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn);
②函數(shù)f(x)=log2(x+$\sqrt{1+{x^2}}$),g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函數(shù);
③若函數(shù)f(x)滿足f(x-1)=-f(x+1),且f(1)=2,則f(7)=-2;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1,
其中正確命題的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知映射f:(x,y)→(x-2y,2x+x),則(2,4)→(-6,6),(1,3)→(-5,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域?yàn)閧x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知全集U=R,集合A={x|-2<x<5},B={x|-1≤x-1≤2}.
(1)求A∪B,A∩B
(2)求A∪(∁UB),A∩(∁UB)

查看答案和解析>>

同步練習(xí)冊(cè)答案