【題目】如圖, 平面, 平面, 是等邊三角形, ,
是的中點(diǎn).
(1)求證: ;
(2)若直線與平面所成角的正切值為,求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:⑴證明, ,推出平面,然后證明
;
⑵以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,過且與直線平行的直線為軸,建立空間直角坐標(biāo)系,說明為直線與平面所成角,設(shè),求出相關(guān)點(diǎn)的坐標(biāo),求出平面與平面的法向量,利用空間向量的數(shù)量積求解即可;
解析:(1)因?yàn)?/span>是等邊三角形, 是的中點(diǎn),所.
因?yàn)?/span>平面, 平面,所以.
因?yàn)?/span>,所以平面.
因?yàn)?/span>平面,所以.
(2)法1:以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,過且與直線平行的直線為軸,建立空間直角坐標(biāo)系.
因?yàn)?/span>平面,所以為直線與平面所成角.
得,即,從而.
不妨設(shè),又,則, .故, ,
, .于是,
, , ,設(shè)平面與平面的法向量分別為
, ,由得令,得,
所以.由得令得
, .所以.
所以.
所以二面角的余弦值為.
法2:因?yàn)?/span>平面,所以為直線與平面所成角.
由題意得,即,從而.
不妨設(shè),又, , , .
由于平面, 平面,則.
取的中點(diǎn),連接,則.
在中, ,
在中, ,
在中, ,
取的中點(diǎn),連接, , ,
則, . 所以為二面角的平面角.
在中, ,在中, ,
在中, ,因?yàn)?/span>,
所以.所以二面角的余弦值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在點(diǎn)處的切線方程為.
(Ⅰ)求實(shí)數(shù),的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ),成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,觀察圖中數(shù)據(jù),完成下列問題.
()求的值及樣本中男生身高在(單位:)的人數(shù).
()假設(shè)用一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過樣本估計(jì)該校全體男生的平均身高.
()在樣本中,從身高在和(單位:)內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AM,BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是,則點(diǎn)M的軌跡C的方程是___________.若點(diǎn)為軌跡C的焦點(diǎn),是直線上的一點(diǎn),是直線與軌跡的一個(gè)交點(diǎn),且,則_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?
參考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,且,若以為左右焦點(diǎn)的橢圓經(jīng)過點(diǎn).
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)過右焦點(diǎn)且斜率為的動(dòng)直線與相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com