已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為. 過(guò)拋物線上一點(diǎn)M作的垂線,垂足為E. 若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p = ______.
2
由拋物線的參數(shù)方程可知其普通方程為為等邊三角形,E的橫坐標(biāo)為的橫坐標(biāo)為3,
【考點(diǎn)定位】本題考查拋物線的方程、定義和其幾何性質(zhì),考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為.已知都在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)是橢圓上位于軸上方的兩點(diǎn),且直線與直線平行,交于點(diǎn)P.
(i)若,求直線的斜率;
(ii)求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中是坐標(biāo)原點(diǎn),是參數(shù).
(1)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(2)當(dāng)時(shí),求的最大值和最小值;
(3)如果動(dòng)點(diǎn)的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)是曲線上任意一點(diǎn),則點(diǎn)到直線的最小距離是(     )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓C:的左、右焦點(diǎn)分別為F1、F2,A是橢圓C上的一點(diǎn),,坐標(biāo)原點(diǎn)O到直線AF1的距離為.
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過(guò)點(diǎn)Q的直線l 交 x 軸于點(diǎn),交 y 軸于點(diǎn)M,若,求直線l 的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知橢圓)的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是第一象限內(nèi)雙曲線上的點(diǎn).若直線、的傾斜角分別為,,且,那么的值是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)
(1)求曲線的軌跡方程;
(2)若過(guò)點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)
已知定點(diǎn)A(0,1),B(0,-1),C(1,0).動(dòng)點(diǎn)P滿足:.
(1)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線類型;
(2)當(dāng)時(shí),求的最大、最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案