【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的余弦值.
【答案】(1)見詳解;(2).
【解析】
(1)記,連接,再利用中位線的相關(guān)性質(zhì)即可證明線面平行;
(2)根據(jù)位置關(guān)系建立空間直角坐標(biāo)系,根據(jù)平面法向量的夾角的余弦值并結(jié)合圖形,即可計算出二面角的余弦值.
(1)記,連接,如圖所示:
因為幾何體是直三棱柱,所以四邊形是矩形,所以為中點,
又因為為中點,所以,
又因為平面,平面,
所以平面;
(2)因為,所以,所以是等腰直角三角形,
所以建立空間直角坐標(biāo)系如下圖所示:
設(shè),則,所以,
所以,
設(shè)平面一個法向量為,平面一個法向量為,
所以,所以,令,所以,
又,所以,令,所以,
所以,由圖可知二面角為銳二面角,
所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護(hù)地球、節(jié)約用水是我們每個人的義務(wù)與責(zé)任.某市政府為了對自來水的使用進(jìn)行科學(xué)管理,節(jié)約水資源,計劃確定一個家庭年用水量的標(biāo)準(zhǔn).為此,對全市家庭日常用水量的情況進(jìn)行抽樣抽查,獲得了個家庭某年的用水量(單位:立方米),統(tǒng)計結(jié)果如下表及圖所示.
分組 | 頻數(shù) | 頻率 |
25 | ||
0.19 | ||
50 | ||
0.23 | ||
0.18 | ||
5 |
(1)分別求出,的值;
(2)若以各組區(qū)間中點值代表該組的取值,試估計全市家庭年均用水量;
(3)從樣本中年用水量在(單位:立方米)的5個家庭中任選3個,作進(jìn)一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,再減去80,得到一組新數(shù)據(jù),若求得新的數(shù)據(jù)的平均數(shù)是1.2,方差是4.4,則原來數(shù)據(jù)的平均數(shù)和方差分別是( )
A.40.6,1.1B.48.8,4.4C.81.2,44.4D.78.8,75.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棱長為1的正方體中,點、分別在線段、上運動(不包括線段端點),且.以下結(jié)論:①;②若點、分別為線段、的中點,則由線與確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結(jié)論為______.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,,,點在上,且,將沿折起,使得平面平面(如圖2).為中點
(1)求證:;
(2)求四棱錐的體積;
(3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱柱的底面邊長為,側(cè)棱長為1,求:
(1)直線與直線所成角的余弦值;
(2)平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,且,則
①數(shù)列是等比數(shù)列;
②滿足不等式:
③若函數(shù)在R上單調(diào)遞減,則數(shù)列是單調(diào)遞減數(shù)列;
④存在數(shù)列中的連續(xù)三項,能組成三角形的三條邊;
⑤滿足等式:.
正確的序號是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以為首項的數(shù)列滿足:
(1)當(dāng),時,求數(shù)列的通項公式;
(2)當(dāng),時,試用表示數(shù)列前100項的和;
(3)當(dāng)(是正整數(shù)),,正整數(shù)時,判斷數(shù)列,,,是否成等比數(shù)列?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com