分析 求得f(x)的導(dǎo)數(shù),由a≥1,考慮x>0時(shí),0<$\frac{x}{\sqrt{{x}^{2}+1}}$<1,可得f(x)在(0,+∞)遞減,即有函數(shù)f(x)在[a,+∞)上遞減,可得f(x)的最值.
解答 解:函數(shù)f(x)=$\sqrt{{x}^{2}+1}$-ax的導(dǎo)數(shù)為g′(x)=$\frac{1}{2}$•$\frac{1}{\sqrt{{x}^{2}+1}}$•2x-a
=$\frac{x}{\sqrt{{x}^{2}+1}}$-a,
當(dāng)x>0時(shí),由0<$\frac{{x}^{2}}{{x}^{2}+1}$<1,可得0<$\frac{x}{\sqrt{{x}^{2}+1}}$<1,
由a≥1,可得$\frac{x}{\sqrt{{x}^{2}+1}}$-a<0,
則f(x)在(0,+∞)遞減,
即有函數(shù)f(x)在[a,+∞)上遞減,
則f(x)的最大值為f(a)=$\sqrt{{a}^{2}+1}$-a2,無(wú)最小值.
點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,考查運(yùn)算能力,正確求導(dǎo)是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | cos70° | D. | sin70° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com