已知函數(shù)f(x)=2sin(ωx+
π
6
)(ω>0),函數(shù)f(x)的圖象與x軸兩個相鄰交點的距離為π,則f(x)的單調(diào)遞增區(qū)間是
 
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:函數(shù)f(x)的圖象與x軸兩個相鄰交點的距離為π等于半個周期,從而可求ω,確定函數(shù)的解析式,根據(jù)三角函數(shù)的圖象和性質(zhì)即可求出f(x)的單調(diào)遞增區(qū)間
解答: 解:函數(shù)f(x)的圖象與x軸兩個相鄰交點的距離為π=
T
2

故函數(shù)的最小正周期T=2π,
又∵ω>0
∴ω=1
 故f(x)=2sin(x+
π
6
),
由2kπ-
π
2
≤x+
π
6
≤2kπ+
π
2
⇒-
3
+2kπ≤x≤
π
3
+2kπ,k∈Z
故答案為:[-
3
+2kπ,
π
3
+2kπ],k∈Z
點評:本題主要考察了由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的圖象和性質(zhì),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

國家統(tǒng)計局對某門戶網(wǎng)站的訪問量與廣告收益進行統(tǒng)計評估,從該網(wǎng)站近三年中隨機抽取100天,訪問量的統(tǒng)計結果(單位:萬次)如表所示:
訪問量500600700
頻  數(shù)503020
(Ⅰ)根據(jù)上表的統(tǒng)計結果,求訪問量分別為500萬次,600萬次,700萬次的頻率;
(Ⅱ)已知每100萬次的訪問量能使該網(wǎng)站獲得廣告收益5萬元,用ξ表示該網(wǎng)站兩天的廣告收益(單位:
萬元),假設每天的訪問量相互獨立,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x+2
3
sinxcosx.
(1)求函數(shù)f(x)的最大值,并取得最大值時對應的x的值;
(2)若f(θ)=
4
3
,求cos(4θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線過點(0,a),其斜率為1,且與圓x2+y2=4相切,則a的值為( 。
A、±4
B、±2
2
C、4x+2y=5
D、4x-2y=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

今年暑假期間有一個自駕游車隊,組織車友前往青海游玩.該車隊是由31輛車身長都約為5m(以5m計算)的同一車型組成的,行程中經(jīng)過一個長為2725m的隧道(通過該隧道的速度不能超過20m/s),勻速通過該隧道,設車隊速度為xm/s,根據(jù)安全和車流的需要,當0<x≤12時,相鄰兩車之間保持20m的距離,當12<x≤20時,相鄰兩車之間保持(
1
6
x2+
1
3
x)
m的距離.自第1輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間為
y(s).
(Ⅰ)將y表示成x的函數(shù);
(Ⅱ)求該車隊通過隧道時間y的最小值及此時車隊的速度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知an=
n-
2007
n-
2008
(n∈N*),則當n=
 
時,an最大,n=
 
時,an最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
k-2x
1+k•2x
(k為常數(shù))在定義域R上為奇函數(shù),則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:x<0時,f(x)=(
1
2
x,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0; q:實數(shù)x滿足2<x≤3.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案